20.函數(shù)f(x)=sinx-x,$x∈[0,\frac{π}{2}]$的最小值為1-$\frac{π}{2}$.

分析 求出函數(shù)的導(dǎo)數(shù),解關(guān)于導(dǎo)函數(shù)的不等式,求出函數(shù)的單調(diào)區(qū)間,從而求出函數(shù)的最小值即可.

解答 解:∵f(x)=sinx-x,
∴f′(x)=cosx-1≤0,在$x∈[0,\frac{π}{2}]$恒成立,
∴函數(shù)f(x)=sinx-x,在[0,$\frac{π}{2}$]上單調(diào)遞減,
∴f(x)min=f($\frac{π}{2}$)=1-$\frac{π}{2}$,
故答案為:$1-\frac{π}{2}$

點(diǎn)評(píng) 本題考查了函數(shù)的單調(diào)性、最值問(wèn)題,考查導(dǎo)數(shù)的應(yīng)用,是一道中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.設(shè)$a=\int_0^π{sinx}dx$,則二項(xiàng)式${({ax-\frac{1}{x}})^6}$的展開式中的常數(shù)項(xiàng)是-160.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.“sin2α=$\frac{1}{2}$”是“α=kπ+$\frac{5}{12}$π,k∈Z”的(  )
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分又不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.設(shè)a∈R,函數(shù)$f(x)=\frac{1}{3}{x^3}-\frac{1}{2}(2a+1){x^2}+bx+d$的圖象如圖.
(1)已知f′(x)是f(x)的導(dǎo)函數(shù),且$g(x)=\frac{f'(x)}{x}(x≠0)$為奇函數(shù),求a的值;
(2)若函數(shù)f(x)在x=2處取得極小值,求函數(shù)f(x)的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.已知tanx=3,則$\frac{1}{{{{sin}^2}x-2{{cos}^2}x}}$的值為$\frac{10}{7}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.已知橢圓$\frac{x^2}{4}+\frac{y^2}{16}$=1與$\frac{x^2}{4+n}+\frac{y^2}{16+n}$=1(n>0),則下述結(jié)論中正確的是( 。
A.有相等的長(zhǎng)軸長(zhǎng)B.有相等的焦距C.有相等的離心率D.有相同的頂點(diǎn)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.設(shè)F1,F(xiàn)2分別是橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的左右焦點(diǎn),M是C上一點(diǎn)且MF2與x軸垂直,直線MF1與C的另一個(gè)交點(diǎn)為N.
(Ⅰ)若直線MN的斜率為$\frac{3}{4}$,求C的離心率;
(Ⅱ)若點(diǎn)M到F1、F2的距離之和為4,求橢圓C的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.在等差數(shù)列{an}中,a5+a10=58,a4+a9=50,則它的前10項(xiàng)和為210.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.下列命題正確的是( 。
A.若$\overrightarrow a•\overrightarrow b=\overrightarrow a•\overrightarrow c$,則$\overrightarrow b=\overrightarrow c$B.若$|{\overrightarrow a+\overrightarrow b}|=|{\overrightarrow a-\overrightarrow b}|$,則$\overrightarrow a•\overrightarrow b=0$
C.若$\overrightarrow a∥\overrightarrow b,\overrightarrow b∥\overrightarrow c$,則$\overrightarrow a∥\overrightarrow c$D.若$\overrightarrow a$與$\overrightarrow b$是單位向量,則$\overrightarrow a•\overrightarrow b=1$

查看答案和解析>>

同步練習(xí)冊(cè)答案