17.已知(1+xi)(1-2i)=y(其中x,y∈R),則( 。
A.x=-2,y=-3B.x=2,y=-3C.x=-2,y=7D.x=2,y=5

分析 利用復(fù)數(shù)的代數(shù)形式混合運(yùn)算,通過(guò)復(fù)數(shù)相等求解即可.

解答 解:(1+xi)(1-2i)=y,
可得1+2x+(x-2)i=y,
即:$\left\{\begin{array}{l}{1+2x=y}\\{x-2=0}\end{array}\right.$,解得:$\left\{\begin{array}{l}{x=2}\\{y=5}\end{array}\right.$,
故選:D.

點(diǎn)評(píng) 本題考查復(fù)數(shù)的代數(shù)形式混合運(yùn)算,復(fù)數(shù)相等的充要條件,考查計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.函數(shù)f(x)=|lnx|-$\frac{1}{8}$x2的圖象大致為( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.設(shè)函數(shù)f(x)=(x-1)2,g(x)=a(lnx)2,其中a∈R,且a≠0.
(I)若直線x=e(e為自然對(duì)數(shù)的底數(shù))與曲線y=f(x)和y=g(x)分別交于 A、B兩點(diǎn),且曲線y=f(x)在點(diǎn)A處的切線與曲線y=g(x)在點(diǎn)B處的切線互相平行,求a的值;
(Ⅱ)設(shè)h(x)=f(x)+mlnx(m∈R,且m≠0)有兩個(gè)極值點(diǎn)x1,x2,且x1<x2,證明:$h({x_2})>\frac{1-2ln2}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.已知函數(shù)f(x)=$\left\{\begin{array}{l}{-{x}^{2}+2x,x≤0}\\{lnx,x>0}\end{array}\right.$,則f(f($\frac{1}{e}$))=( 。
A.3B.1C.-1D.-3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.若函數(shù)f(x)=sin(x+φ)是偶函數(shù),則φ的一個(gè)值是(  )
A.0B.$\frac{π}{2}$C.πD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.已知復(fù)數(shù)z1=2+2i,z2=1-3i(i為虛數(shù)單位),那么復(fù)數(shù)$\frac{{{z}_{1}}^{2}}{{z}_{2}}$所對(duì)應(yīng)的點(diǎn)在復(fù)平面的( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.設(shè)ln3=a,ln7=b,則ea+eb=10.(其中e為自然對(duì)數(shù)的底數(shù))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.如圖1所示,在邊長(zhǎng)為12的正方形AA′A′1A1中,點(diǎn)B,C在線段AA′上,且AB=3,BC=4,作BB1∥AA1,分別交A1A′1、AA′1于點(diǎn)B1、P,作CC1∥AA1,分別交A1A′1、AA′1于點(diǎn)C1、Q,將該正方形沿BB1、CC1折疊,使得A′A′1與AA1重合,構(gòu)成如圖2所示的三棱柱ABC-A1B1C1.則在三棱柱ABC-A1B1C1中,直線AP與直線A1Q所成角的余弦值為$\frac{1}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.已知點(diǎn)O為坐標(biāo)原點(diǎn),點(diǎn)An(n,αn)(n∈N*)為函數(shù)f(x)=$\frac{1}{x+1}$的圖象上的任意一點(diǎn),向量$\overrightarrow{i}$=(0,1).θn是向量$\overrightarrow{O{A}_{n}}$與$\overrightarrow{i}$的夾角,則數(shù)列|$\frac{cos{θ}_{n}}{sin{θ}_{n}}$|的前2015項(xiàng)的和為( 。
A.2B.$\frac{2014}{2015}$C.$\frac{2015}{2016}$D.1

查看答案和解析>>

同步練習(xí)冊(cè)答案