12.若函數(shù)f(x)=sin(x+φ)是偶函數(shù),則φ的一個(gè)值是( 。
A.0B.$\frac{π}{2}$C.πD.

分析 由函數(shù)的奇偶性可得φ的取值范圍,結(jié)合選項(xiàng)驗(yàn)證可得.

解答 解:∵函數(shù)f(x)=sin(x+φ)是偶函數(shù),
∴f(-x)=f(x),即sin(-x+φ)=sin(x+φ),
∴(-x+φ)=x+φ+2kπ或-x+φ+x+φ=π+2kπ,k∈Z,
當(dāng)(-x+φ)=x+φ+2kπ時(shí),可得x=-kπ,不滿足函數(shù)定義;
當(dāng)-x+φ+x+φ=π+2kπ時(shí),φ=kπ+$\frac{π}{2}$,k∈Z,
結(jié)合選項(xiàng)可得B為正確答案.
故選:B.

點(diǎn)評(píng) 本題考查正弦函數(shù)圖象,涉及函數(shù)的奇偶性,屬基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.若${y^3}{(x+\frac{1}{xy})^n}(n∈{N^*})$的展開(kāi)式中存在常數(shù)項(xiàng),則常數(shù)項(xiàng)為( 。
A.15B.20C.30D.120

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.已知直三棱柱ABC-A1B1C1中,∠ABC=90°,AB=BC=BB1,求異面直線A1B與B1C所成的角60°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.已知集合A={2,3},B={x|(x-2)(x+2)=0},則A∪B=( 。
A.B.{2}C.{2,3}D.{-2,2,3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,滿足2acosB=2c-b.
(1)求角A;
(2)若a是b,c的等比中項(xiàng),判斷△ABC的形狀,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.已知(1+xi)(1-2i)=y(其中x,y∈R),則( 。
A.x=-2,y=-3B.x=2,y=-3C.x=-2,y=7D.x=2,y=5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.已知a=${∫}_{-2}^{2}$$\sqrt{4-{x}^{2}}$dx,則(ax+$\frac{1}{x}$)6展開(kāi)式中的常數(shù)項(xiàng)為160π3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.已知函數(shù)f(x)=-mcos(ωx+φ)(m>0,ω>0,|φ|<$\frac{π}{2}$)的部分圖象如圖所示,點(diǎn)A,B,C為f(x)的圖象與坐標(biāo)軸的交點(diǎn),且A(1,0),D($\frac{5}{3}$,-$\frac{10}{3}$),$\overrightarrow{CD}$=$\frac{1}{2}$$\overrightarrow{DB}$,則m=5$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.已知數(shù)列{an}滿足(n+1)an+1-nan=2,且a1=1,則該數(shù)列的通項(xiàng)公式是an=2-$\frac{1}{n}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案