【題目】a、b、c為三條不重合的直線,α、β、γ為三個(gè)不重合的平面,現(xiàn)給出六個(gè)命題.
①a∥b; ②a∥b; ③α∥β;
④α∥β; ⑤a∥α; ⑥a∥α,
其中正確的命題是________.(填序號(hào))
【答案】①④
【解析】
在①中,由平行公理判斷正誤;在②中,a與b相交、平行或異面;在③中,α與β相交或平行;在④中,由面面平行的判定定理判斷④的正誤;在⑤中,a∥α,或aα;在⑥中,a∥α或aα.
由a,b,c為三條不重合的直線,α,β,γ為三個(gè)不重合的平面,知:
①∵a∥c,b∥c,∴由平行公理得a∥b,故①正確;
②∵a∥γ,b∥γ,∴a與b相交、平行或異面,故②錯(cuò)誤;
③∵c∥α,c∥β,∴α與β相交或平行,故③錯(cuò)誤;
④∵α∥γ,β∥γ,∴由面面平行的判定定理得α∥β,故④正確;
⑤∵c∥α,a∥c,∴a∥α,或aα,故⑤錯(cuò)誤;
⑥∵a∥γ,,∴a∥α或aα,故⑥錯(cuò)誤.
故答案為:①④.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=|a﹣3x|﹣|2+x|.
(1)若a=2,解不等式f(x)≤3;
(2)若存在實(shí)數(shù)a,使得不等式f(x)≥1﹣a+2|2+x|成立,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】一個(gè)自然數(shù)若與它的“反序數(shù)”相等,這個(gè)自然數(shù)就稱為一個(gè)“魔幻數(shù)”如數(shù)“”、“”都是“魔幻數(shù)”在的元素中,去掉所有的“魔幻數(shù)”后,形成一個(gè)不含“魔幻數(shù)”的子集,則中的元素共有______個(gè).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某服裝廠生產(chǎn)一種服裝,每件服裝成本為40元,出廠單價(jià)定為60元,該廠為鼓勵(lì)銷售商訂購(gòu),規(guī)定當(dāng)一次訂購(gòu)量超過(guò)100件時(shí),每多訂購(gòu)一件,訂購(gòu)的全部服裝的出廠單價(jià)就降低元,根據(jù)市場(chǎng)調(diào)查,銷售商一次訂購(gòu)不會(huì)超過(guò)600件.
(1)設(shè)一次訂購(gòu)件,服裝的實(shí)際出廠單價(jià)為元,寫出函數(shù)的表達(dá)式;
(2)當(dāng)銷售商一次訂購(gòu)多少件服裝時(shí),該廠獲得的利潤(rùn)最大?其最大利潤(rùn)是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知直線l過(guò)點(diǎn)A(0,4),且在兩坐標(biāo)軸上的截距之和為1.
(Ⅰ)求直線l的方程;
(Ⅱ)若直線l1與直線l平行,且l1與l間的距離為2,求直線l1的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知點(diǎn)P是平行四邊形ABCD所在平面外一點(diǎn),M、N分別是AB、PC的中點(diǎn).
(1)求證:MN∥平面PAD;
(2)在PB上確定一個(gè)點(diǎn)Q,使平面MNQ∥平面PAD.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,正三棱柱的高為2,是的中點(diǎn),是的中點(diǎn)
(1)證明:平面;
(2)若三棱錐的體積為,求該正三棱柱的底面邊長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓的圓心在坐標(biāo)原點(diǎn),且與直線相切.
(1)求直線被圓所截得的弦的長(zhǎng);
(2)過(guò)點(diǎn)作兩條與圓相切的直線,切點(diǎn)分別為求直線的方程;
(3)若與直線垂直的直線與圓交于不同的兩點(diǎn),若為鈍角,求直線 在軸上的截距的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com