9.下列四個命題:
①拋物線x2=4y的焦點坐標(biāo)是(1,0);
②等差數(shù)列{an}中,a1,a3,a4成等比數(shù)列,則公比為$\frac{1}{2}$;
③已知a>0,b>0,a+b=1,則$\frac{2}{a}+\frac{3}$的最小值為$5+2\sqrt{6}$;
④在△ABC中,已知$\frac{a}{cosA}=\frac{cosB}=\frac{c}{cosC}$,則∠A=60°.
正確命題的序號有③④.

分析 ①拋物線x2=4y的焦點在y軸上,判斷原命題錯誤;
②等差數(shù)列{an}為常數(shù)列時,公比q=1,判斷原命題錯誤;
③利用基本不等式求出$\frac{2}{a}+\frac{3}$的最小值為$5+2\sqrt{6}$,判斷原命題正確;
④由正弦定理得出$\frac{sinA}{cosA}$=$\frac{sinB}{cosB}$=$\frac{sinC}{cosC}$,A=B=C=60°判斷原命題正確.

解答 解:對于①,拋物線x2=4y的焦點坐標(biāo)是(0,1),原命題錯誤;
對于②,等差數(shù)列{an}中,a1,a3,a4成等比數(shù)列,則${{(a}_{1}+2d)}^{2}$=a1(a1+3d),
當(dāng)d=0時,a1=a3=a4,公比q=1;
當(dāng)d≠0時,a1=-4d,a3=-2d,a4=-d,公比q=$\frac{1}{2}$;原命題錯誤;
對于③,a>0,b>0,a+b=1,則
$\frac{2}{a}+\frac{3}$=$\frac{2a+2b}{a}$+$\frac{3a+3b}$=5+$\frac{2b}{a}$+$\frac{3a}$≥5+2$\sqrt{6}$,當(dāng)且僅當(dāng)$\frac{2b}{a}$=$\frac{3a}$時“=”成立;
即最小值為$5+2\sqrt{6}$,原命題正確;
對于④,△ABC中,$\frac{a}{cosA}=\frac{cosB}=\frac{c}{cosC}$,
由正弦定理得$\frac{sinA}{cosA}$=$\frac{sinB}{cosB}$=$\frac{sinC}{cosC}$,
即tanA=tanB=tanC;
又A、B、C∈(0,π),
所以A=B=C=60°;原命題正確;
綜上,正確的命題序號是③④.
故答案為:③④.

點評 本題考查了命題真假的判斷問題,也考查了拋物線與等差、等比數(shù)列的應(yīng)用問題,基本不等式與解三角形的應(yīng)用問題,是綜合性題目.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知命題p:若x2-3x+2=0.則x=1;命題q:若y=cos(wx+$\frac{π}{3}$)的周期為π,則w=2,;則在命題①p∧q;②p∨¬q;③¬p∧¬q;④p∨q中,真命題是(  )
A.①③B.①④C.②③D.②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.《算法統(tǒng)宗》是中國古代數(shù)學(xué)名著,由明代數(shù)學(xué)家程大位編著.《算法統(tǒng)宗》對我國民間普及珠算和數(shù)學(xué)知識起到了很大的作用,是東方古代數(shù)學(xué)的名著.在這部著作中,許多數(shù)學(xué)問題都是以歌訣形式呈現(xiàn)的,“竹筒容米”就是其中一首:家有九節(jié)竹一莖,為因盛米不均平;下頭三節(jié)三升九,上梢四節(jié)貯三升;唯有中間二節(jié)竹,要將米數(shù)次第盛;若是先生能算法,也教算得到天明!大意是:用一根9節(jié)長的竹子盛米,每節(jié)竹筒盛米的容積是不均勻的.下端3節(jié)可盛米3.9升,上端4節(jié)可盛米3升.要按依次盛米容積相差同一數(shù)量的方式盛米,中間兩節(jié)可盛米多少升?由以上條件,計算出中間兩節(jié)的容積為( 。
A.2.1升B.2.2升C.2.3升D.2.4升

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.若a,b,c是直角三角形的三邊(c為斜邊),則圓x2+y2=4被直線ax+by+c=0所截得的弦長等于(  )
A.1B.2C.3D.2$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知直線l過點(1,2)且與直線2x-3y+1=0垂直,則l的方程是( 。
A.3x+2y-1=0B.3x+2y-7=0C.2x-3y+5=0D.2x-3y+8=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.△ABC的三個內(nèi)角為A,B,C,若$\frac{\sqrt{3}cosA+sinA}{\sqrt{3}sinA-cosA}$=tan(-$\frac{7}{12}$π),則2cosB+sin2C的最大值為$\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.設(shè)全集是U=N,A={2},B={x|x2-2x+m=0},若(∁uA)∩B=∅,則m的取值范圍是m≠1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知圓C:x2+y2=1,點P在直線l:y=x+2上,若圓C上存在兩點A,B使得$\overrightarrow{PA}=3\overrightarrow{PB}$,則點P的橫坐標(biāo)的取值范圍為(  )
A.$[{-1,\frac{1}{2}}]$B.$[{-2,\frac{1}{2}}]$C.[-1,0]D.[-2,0]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知函數(shù)f(x)=Asin(ωx+φ)(其中A,ω,φ為常數(shù),且A>0,ω>0,-$\frac{π}{2}$<φ<$\frac{π}{2}$)的部分圖象如圖所示:
(1)求函數(shù)f(x)的解析式;
(2)若f(α+$\frac{π}{6}$)=$\frac{6}{5}$,且$\frac{π}{2}$<α<π,求$\frac{sin2α}{si{n}^{2}α+sinαcosα-cos2α}$的值.

查看答案和解析>>

同步練習(xí)冊答案