【題目】函數(shù), (是自然對(duì)數(shù)的底數(shù), ).
(Ⅰ)求證: ;
(Ⅱ)已知表示不超過的最大整數(shù),如, ,若對(duì)任意,都存在,使得成立,求實(shí)數(shù)的取值范圍.
【答案】(Ⅰ)證明見解析;(Ⅱ) .
【解析】試題分析:
(Ⅰ)首先得出,求出導(dǎo)函數(shù),由確定增區(qū)間, 確定減區(qū)間,從而確定出的最小值為,而,由此不等式得證;
(Ⅱ)此問題首先進(jìn)行轉(zhuǎn)化,當(dāng)時(shí), 的最小值為,當(dāng)時(shí), 的最小值為,依題意有,而由(Ⅰ)知=0,因此有,下面就是求出的最小值,即可得出的范圍,為此可求的導(dǎo)數(shù).為了確定的正負(fù),令,再求導(dǎo),
而當(dāng)時(shí), , , 在上是增函數(shù),所以.下面對(duì)按正負(fù)分類討論:
A①, 在上是增函數(shù),最小值為;②,即時(shí),因?yàn)?/span>在上是增函數(shù),且,因此在上有一個(gè)零點(diǎn),記為,
,即,這樣有當(dāng)時(shí), ,即;當(dāng)時(shí), ,即,所以, 在上是減函數(shù),在上是增函數(shù),所以,又,所以,所以,所以.由,可令,由此求出的范圍,即此時(shí)的范圍,綜合以上兩點(diǎn)可得.
試題解析:
(Ⅰ)().
當(dāng)時(shí), ,當(dāng)時(shí), ,
即在上單調(diào)遞減,在上單調(diào)遞增,
所以,當(dāng)時(shí), 取得最小值,最小值為,
所以,
又,且當(dāng)時(shí)等號(hào)成立,
所以, .
(Ⅱ)記當(dāng)時(shí), 的最小值為,當(dāng)時(shí), 的最小值為,
依題意有,
由(Ⅰ)知,所以,則有,
.
令, ,
而當(dāng)時(shí), ,所以,
所以在上是增函數(shù),所以.
①當(dāng),即時(shí), 恒成立,即,
所以在上是增函數(shù),所以,
依題意有,解得,
所以.
②當(dāng),即時(shí),因?yàn)?/span>在上是增函數(shù),且,
若,即,則,
所以,使得,即,
且當(dāng)時(shí), ,即;當(dāng)時(shí), ,即,
所以, 在上是減函數(shù),在上是增函數(shù),
所以,
又,所以,
所以,所以.
由,可令,
,當(dāng)時(shí), ,所以在上是增函數(shù),
所以當(dāng)時(shí), ,即,
所以.
綜上,所求實(shí)數(shù)的取值范圍是.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,(1)已知a=,b=,B=45°,求A、C、c;
(2)已知sin A∶sin B∶sin C=(+1)∶(-1)∶,求最大角.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓C經(jīng)過點(diǎn),且圓心在直線上,又直線與圓C交于P,Q兩點(diǎn).
(1)求圓C的方程;
(2)若,求實(shí)數(shù)的值;
(3)過點(diǎn)作直線,且交圓C于M,N兩點(diǎn),求四邊形的面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在矩形ABCD中,邊AB、AD的長(zhǎng)分別為2,1,若M,N分別是邊BC、CD上的點(diǎn),且滿足 = =λ.
(1)當(dāng)λ= 時(shí),求向量 和 夾角的余弦值;
(2)求 的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某職稱晉級(jí)評(píng)定機(jī)構(gòu)對(duì)參加某次專業(yè)技術(shù)考試的100人的成績(jī)進(jìn)行了統(tǒng)計(jì),繪制了頻率分布直方圖(如圖所示),規(guī)定80分及以上者晉級(jí)成功,否則晉級(jí)失。M分為100分).
(1)求圖中的值;
(2)估計(jì)該次考試的平均分(同一組中的數(shù)據(jù)用該組的區(qū)間中點(diǎn)值代表);
(3)根據(jù)已知條件完成下面列聯(lián)表,并判斷能否有85%的把握認(rèn)為“晉級(jí)成功”與性別有關(guān)?
(參考公式: ,其中)
0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | |
0.780 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】據(jù)統(tǒng)計(jì),某物流公司每天的業(yè)務(wù)中,從甲地到乙地的可配送的貨物量的頻率分布直方圖,如圖所示,將頻率視為概率,回答以下問題.
(1)求該物流公司每天從甲地到乙地平均可配送的貨物量;
(2)該物流公司擬購(gòu)置貨車專門運(yùn)營(yíng)從甲地到乙地的貨物,一輛貨車每天只能運(yùn)營(yíng)一趟,每輛車每
趟最多只能裝載40 件貨物,滿載發(fā)車,否則不發(fā)車。若發(fā)車,則每輛車每趟可獲利1000 元;若未發(fā)車,
則每輛車每天平均虧損200 元。為使該物流公司此項(xiàng)業(yè)務(wù)的營(yíng)業(yè)利潤(rùn)最大,該物流公司應(yīng)該購(gòu)置幾輛貨
車?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知為拋物線的焦點(diǎn),過的直線與交于兩點(diǎn), 為中點(diǎn),點(diǎn)到軸的距離為, .
(1)求的值;
(2)過分別作的兩條切線, .請(qǐng)選擇軸中的一條,比較到該軸的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示, 矩形所在的平面, 分別是的中點(diǎn).
(1)求證: 平面;
(2)求證: .
(3)當(dāng)滿足什么條件時(shí),能使平面成立?并證明你的結(jié)論.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com