【題目】經(jīng)銷商銷售某種產(chǎn)品,在一個(gè)銷售季度內(nèi),每售出該產(chǎn)品獲利潤元;未售出的產(chǎn)品,每虧損元.根據(jù)以往的銷售記錄,得到一個(gè)銷售季度內(nèi)市場需求量的頻率分布直方圖,如圖所示.經(jīng)銷商為下一個(gè)銷售季度購進(jìn)了該產(chǎn)品.用(單位:,)表示下一個(gè)銷售季度內(nèi)的市場需求量,(單位:元)表示下一個(gè)銷售季度內(nèi)經(jīng)銷該產(chǎn)品的利潤.
(1)將表示為的函數(shù);
(2)根據(jù)直方圖估計(jì)利潤不少于元的概率.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=excos x-x.
(1)求曲線y=f(x)在點(diǎn)(0,f(0))處的切線方程;
(2)求函數(shù)f(x)在區(qū)間上的最大值和最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,一張矩形白紙ABCD,AB=10,AD=,E,F分別為AD,BC的中點(diǎn),現(xiàn)分別將△ABE,△CDF沿BE,DF折起,且A、C在平面BFDE同側(cè),下列命題正確的是____________(寫出所有正確命題的序號)
①當(dāng)平面ABE∥平面CDF時(shí),AC∥平面BFDE
②當(dāng)平面ABE∥平面CDF時(shí),AE∥CD
③當(dāng)A、C重合于點(diǎn)P時(shí),PG⊥PD
④當(dāng)A、C重合于點(diǎn)P時(shí),三棱錐P-DEF的外接球的表面積為150
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司計(jì)劃在辦公大廳建一面長為米的玻璃幕墻.先等距安裝根立柱,然后在相鄰的立柱之間安裝一塊與立柱等高的同種規(guī)格的玻璃.一根立柱的造價(jià)為6400元,一塊長為米的玻璃造價(jià)為元.假設(shè)所有立柱的粗細(xì)都忽略不計(jì),且不考慮其他因素,記總造價(jià)為元(總造價(jià)=立柱造價(jià)+玻璃造價(jià)).
(1)求關(guān)于的函數(shù)關(guān)系式;
(2)當(dāng)時(shí),怎樣設(shè)計(jì)能使總造價(jià)最低?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)求定義域,并判斷函數(shù)f(x)的奇偶性;
(2)若f(1)+f(2)=0,證明函數(shù)f(x)在(0,+∞)上的單調(diào)性,并求函數(shù)f(x)在區(qū)間[1,4]上的最值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù),),以為極點(diǎn),以軸正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(Ⅰ)求直線的普通方程和曲線的直角坐標(biāo)方程;
(Ⅱ)設(shè),直線交曲線于兩點(diǎn),是直線上的點(diǎn),且,當(dāng)最大時(shí),求點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x2+bx+c,其中b,c∈R.
(1)當(dāng)f(x)的圖象關(guān)于直線x=1對稱時(shí),b=______;
(2)如果f(x)在區(qū)間[-1,1]不是單調(diào)函數(shù),證明:對任意x∈R,都有f(x)>c-1;
(3)如果f(x)在區(qū)間(0,1)上有兩個(gè)不同的零點(diǎn).求c2+(1+b)c的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x2-2ax+5.
(1)若f(x)的定義域和值域均是[1,a],求實(shí)數(shù)a的值;
(2)若a≤1,求函數(shù)y=|f(x)|在[0,1]上的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com