分析 (1)連接OE,則OE⊥CD,證明∠DAE=∠OAE,即可證明AE是∠CAD的平分線;
(2)若CE=10,CB=5,由切割線定理求出CA,利用余弦定理求AE的長.
解答 (1)證明:連接OE,則OE⊥CD,
∵AD⊥CD,
∴OE∥AD,
∴∠OEA=∠DAE,
∵OA=OE,
∴∠OEA=∠OAE,
∴∠DAE=∠OAE,
∴AE是∠CAD的平分線;
(2)解:若CE=10,CB=5,由切割線定理,可得102=5•CA,
∴CA=20,
∴OA=OB=7.5,
∴cos∠COE=$\frac{7.5}{12.5}$=$\frac{4}{5}$
△OAE中,AE=$\sqrt{7.{5}^{2}+7.{5}^{2}-2×7.5×7.5×(-\frac{4}{5})}$=$\frac{9}{2}\sqrt{10}$.
點(diǎn)評 本題考查圓的切線的性質(zhì),考查切割線定理、余弦定理,考查學(xué)生分析解決問題的能力,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
x | $\frac{2π}{3}$ | $\frac{5π}{6}$ | |||
ωx+φ | 0 | $\frac{π}{2}$ | π | $\frac{3π}{2}$ | 2π |
Asin(ωx+φ) | 0 | 2 | 0 | -2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{3}{2}$ | B. | $\frac{9}{2}$ | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com