考點(diǎn):對(duì)數(shù)的運(yùn)算性質(zhì)
專(zhuān)題:函數(shù)的性質(zhì)及應(yīng)用
分析:函數(shù)f(x)滿足f(x)=
| log2(1-x),x≤0 | f(x-1)-f(x-2),x>0 |
| |
,可得f(-1)=log
22=1,f(0)=log
21=0.f(1)=f(0)-f(-1)=-1,f(2)=f(1)-f(0)=-1-0=-1,…,可得f(n+6)=f(n),利用其周期性即可得出.
解答:
解:函數(shù)f(x)滿足f(x)=
| log2(1-x),x≤0 | f(x-1)-f(x-2),x>0 |
| |
,
可得f(-1)=log
22=1,f(0)=log
21=0.
f(1)=f(0)-f(-1)=-1,f(2)=f(1)-f(0)=-1-0=-1,f(3)=f(2)-f(1)=-1-(-1)=0,f(4)=f(3)-f(2)=0-(-1)=1,f(5)=f(4)-f(3)=1-0=1,
f(6)=f(5)-f(4)=1-1=0,f(7)=f(6)-f(5)=0-1=-1,…,
∴數(shù)列f(n)是以6為周期的數(shù)列.
∴f(2014)=f(335×6+4)=f(4)=1.
故選;C.
點(diǎn)評(píng):本題考查了分段函數(shù)的性質(zhì)、數(shù)列的周期性,考查了推理能力與計(jì)算能力,屬于中檔題.