兩圓(x-2)2+(y-1)2=4與(x+1)2+(y-2)2=9的公切線有(  )條.
A、1B、2C、3D、4
考點:兩圓的公切線條數(shù)及方程的確定
專題:直線與圓
分析:判斷兩個圓的位置關系,即可判斷公切線的條數(shù).
解答:解:兩圓(x-2)2+(y-1)2=4與(x+1)2+(y-2)2=9的圓心距為:
(2+1)2+(1-2)2
=
10

兩個圓的半徑和為:5,半徑差為:1,
1<
10
<5
,∴兩個圓相交.
公切線只有2條.
故選:B.
點評:本題考查圓的公切線的條數(shù),判斷兩個圓的位置關系是解題的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

某中學有高中生3500人,初中生1500人,為了解學生的學習情況,用分層抽樣的方法從該校學生中抽取一個容量為n的樣本,已知從高中生中抽取70人,則n為( 。
A、100B、150
C、200D、250

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如果sinθ>cosθ,且θ∈(0,2π),那么角θ的取值范圍是( 。
A、(0,
π
4
B、(
π
2
,
4
C、(
π
4
,
4
D、(
4
,2π)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

由曲線y=cosx(|x|≤π)與直線y=-
1
2
所圍成的封閉圖形的面積為( 。
A、
3
2
+
π
3
B、
3
2
+
2
3
π
C、
3
+
π
3
D、
3
+
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

命題“對頂角相等”改寫成“若p,則q”的形式是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知圓C1:x2+y2+2x+6y+9=0和圓C2:x2+y2-6x+2y+1=0.求圓C1、圓C2的公切線方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知一個圓經(jīng)過過兩圓x2+y2+4x+y=-1,x2+y2+2x+2y+1=0的交點,且有最小面積,求此圓的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

△ABC的內(nèi)角A,B,C分別對應邊a.b.c,若a=6,A=30°,C=45°,則△ABC的面積為( 。
A、
9(
3
-1)
2
B、
9(
3
+1)
2
C、9(
3
-1)
D、9(
3
+1)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)=2x+x-2的零點所在區(qū)間是( 。
A、(0,
1
2
B、(
1
2
,1)
C、(1,2)
D、(2,3)

查看答案和解析>>

同步練習冊答案