16.已知向量$\overrightarrow{a}$=$\overrightarrow{{e}_{1}}$-2$\overrightarrow{{e}_{2}}$,$\overrightarrow$=3$\overrightarrow{{e}_{1}}$+$\overrightarrow{{e}_{2}}$,其中$\overrightarrow{{e}_{1}}$=(1,0),$\overrightarrow{{e}_{2}}$=(0,1),求:
(1)$\overrightarrow{a}$•$\overrightarrow$;
(2)$\overrightarrow{a}$與$\overrightarrow$夾角的余弦值.

分析 (1)運(yùn)算得出$\overrightarrow{a}$=(1,-2),$\overrightarrow$=(3,1),根據(jù)數(shù)量積的運(yùn)算公式求解即可.
(2)根據(jù)cos$<\overrightarrow{a}$,$\overrightarrow$>=$\frac{\overrightarrow{a}•\overrightarrow}{|\overrightarrow{a}|•|\overrightarrow|}$求解即可.

解答 解:(1)∵向量$\overrightarrow{a}$=$\overrightarrow{{e}_{1}}$-2$\overrightarrow{{e}_{2}}$,$\overrightarrow$=3$\overrightarrow{{e}_{1}}$+$\overrightarrow{{e}_{2}}$,其中$\overrightarrow{{e}_{1}}$=(1,0),$\overrightarrow{{e}_{2}}$=(0,1),
∴$\overrightarrow{a}$=(1,-2),$\overrightarrow$=(3,1),
$\overrightarrow{a}$$•\overrightarrow$=1×3-2×1=1        
(2)∵|$\overrightarrow{a}$|=$\sqrt{5}$,|$\overrightarrow$|=$\sqrt{10}$,
∴cos$<\overrightarrow{a}$,$\overrightarrow$>=$\frac{1}{\sqrt{5}\sqrt{10}}$=$\frac{\sqrt{2}}{10}$;

點(diǎn)評 本題考查了平面向量的坐標(biāo)運(yùn)算,數(shù)量積,夾角問題,計(jì)算簡單,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.設(shè)a>0,b>0,若$\sqrt{3}$是93a與3b的等比中項(xiàng),則$\frac{2}{a}+\frac{1}$的最小值為( 。
A.1B.13+$4\sqrt{3}$C.2$\sqrt{3}$D.$\frac{13}{2}+2\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知點(diǎn)P(x,y)在圓x2+(y-1)2=1上運(yùn)動(dòng),則$\frac{y-1}{x-2}$的最大值為$\frac{\sqrt{3}}{3}$最小值為-$\frac{\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)f(x)=$\frac{(x-a)^{2}}{lnx}$(其中a為常數(shù)).
(Ⅰ)當(dāng)a=0時(shí),求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)當(dāng)a<1時(shí),若在區(qū)間(1,2)上存在不相等的實(shí)數(shù)m,n,使f(m)=f(n)成立,求a的取值范圍;
(Ⅲ)當(dāng)a=1時(shí),對于任意大于1的實(shí)數(shù)x,恒有f(x)≥k成立,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.函數(shù)f(x)=sin(x+10°)+sin(x+70°)的最大值是( 。
A.1B.2C.$\sqrt{2}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.設(shè)全集U=R,集合A={x|x≤2},B={x|$\frac{1}{x-1}>0$},則(∁UA)∩B=( 。
A.[-2,1]B.(2,+∞)C.(1,2)D.(-∞,-2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.如圖所示,圓錐頂點(diǎn)為P,底面圓心為O,AB和CD是底面圓O上的兩條平行弦,證明:平面PAD與平面PCD的交線平行于底面.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.在△ABC中,角A,B,C的對邊邊長分別為a,b,c且滿足csinA=acosC,則$\sqrt{3}$sinA-cos(B+$\frac{π}{4}$)的最大值為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知在數(shù)列{an}中,a1=1,an+1=$\frac{{a}_{n}}{2{a}_{n}+1}$.
(1)求證:數(shù)列{$\frac{1}{{a}_{n}}$}是等差數(shù)列;
(2)記Sn=a1a2+a2a3+…+anan+1,試比較2Sn與1的大。

查看答案和解析>>

同步練習(xí)冊答案