16.已知f(α)=$\frac{{sin(π-α)cos(2π-α)sin(-α+\frac{3π}{2})}}{{sin(\frac{π}{2}+α)sin(-π-α)}}$.
(1)化簡(jiǎn)f(α);
(2)若α是第三象限角,且cos(α-$\frac{3π}{2}$)=$\frac{1}{5}$,求f(α)的值.

分析 (1)利用三角函數(shù)的誘導(dǎo)公式對(duì)函數(shù)進(jìn)行化簡(jiǎn)即可;(2)由于函數(shù)化簡(jiǎn)后為f(α)=-cosα,所以只要求得-cosα便可,由$cos(α-\frac{3π}{2})=\frac{1}{5}$可求得sinα,又α是第三象限角,可求得cosα,從而求得f(α)的值.

解答 解:(1)根據(jù)已知的關(guān)系式,結(jié)合誘導(dǎo)公式可知$f(α)=\frac{sinα•cosα•(-cosα)}{cosα•sinα}=-cosα$;
(2)因?yàn)棣潦堑谌笙藿,?cos(α-\frac{3π}{2})=\frac{1}{5}$,
那么可知$sinα=-\frac{1}{5}$,$cosα=-\frac{{2\sqrt{6}}}{5}$,
所以$f(α)=-cosα=\frac{{2\sqrt{6}}}{5}$.

點(diǎn)評(píng) 本題考查三角函數(shù)誘導(dǎo)公式的運(yùn)用.考查計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.若函數(shù)f(x)=ax2+6x-4lnx在點(diǎn)M(1,f(1))處的切線方程為y=b.
(1)求a、b的值;
(2)求f(x)的單調(diào)區(qū)間;
(3)若對(duì)于任意的x∈[1,5],恒有f(x)≤3ln($\frac{{e}^{2}}{m}$)+ln(e2m)成立,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.如圖所示的鐵片由兩部分組成,半徑為1的半圓O及等腰直角△EFH,其中FE⊥FH.現(xiàn)將鐵片裁剪成盡可能大的梯形鐵片ABCD(不計(jì)損耗),AD∥BC,且點(diǎn)A,B在弧$\widehat{EF}$上.點(diǎn)C,D在斜邊EH上.設(shè)∠AOE=θ.
(1)求梯形鐵片ABCD的面積S關(guān)于θ的函數(shù)關(guān)系式;
(2)試確定θ的值,使得梯形鐵片ABCD的面積S最大,并求出最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.物體沿直線y=3x移動(dòng),以(0,0)為起點(diǎn),時(shí)間t為參數(shù),則物體的位置可用參數(shù)方程表示為:$\left\{\begin{array}{l}{x=\frac{\sqrt{10}}{10}t}\\{y=\frac{3\sqrt{10}}{10}t}\end{array}\right.$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.設(shè)隨機(jī)變量X~B(2,p),Y~B(4,p),若P(X≥1)=$\frac{5}{9}$,則P(Y≥1)為(  )
A.$\frac{1}{2}$B.$\frac{16}{81}$C.$\frac{65}{81}$D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.在△ABC中,角A,B,C的對(duì)邊分別是a,b,c,sinA,sinB,sinC成等差數(shù)列,且a=2c,則cosA=$-\frac{1}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.設(shè)曲線y=f(x)的切線斜率為-x+2,且過(guò)點(diǎn)(2,5),求該曲線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<π)的一段圖象如圖所示.
(1)求函數(shù)f(x)的解析式;
(2)求函數(shù)f(x)的單調(diào)增區(qū)間;
(3)求函數(shù)f(x)在[-$\frac{3π}{8}$,$\frac{π}{4}$]上的單調(diào)減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.已知$\overrightarrow{a}$=(-1,2),$\overrightarrow$=(x,-1),且$\overrightarrow{a}$∥$\overrightarrow$,則x等于( 。
A.2B.-2C.$\frac{1}{2}$D.-$\frac{1}{2}$

查看答案和解析>>

同步練習(xí)冊(cè)答案