【題目】《九章算術(shù)》是我國古代內(nèi)容極為豐富的數(shù)學(xué)名著,書中提到了一種名為“芻甍”的五面體(如圖):面ABCD為矩形,棱EF∥AB.若此幾何體中,AB=4,EF=2,△ADE和△BCF都是邊長為2的等邊三角形,則此幾何體的表面積為(
A.
B.
C.
D.

【答案】B
【解析】解:過F作FO⊥平面ABCD,垂足為O,取BC的中點(diǎn)P,連結(jié)PF, 過F作FQ⊥AB,垂足為Q,連結(jié)OQ.
∵△ADE和△BCF都是邊長為2的等邊三角形,
∴OP= (AB﹣EF)=1,PF= ,OQ= BC=1,
∴OF= = ,F(xiàn)Q= = ,
∴S梯形EFBA=S梯形EFCB= =3 ,
又S△BCF=S△ADE= = ,S矩形ABCD=4×2=8,
∴幾何體的表面積S=3 + +8=8+8
故選:B.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】f(x)是定義在(0,+∞)上的單調(diào)增函數(shù),滿足f(xy)=f(x)+f(y),f(3)=1,當(dāng)f(x)+f(x-8)≤2時(shí),x的取值范圍是(  )

A. (8,+∞) B. (8,9] C. [8,9] D. (0,8)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】探究函數(shù),x∈(0,+∞)取最小值時(shí)x的值,列表如下:

x

0.5

1

1.5

1.7

1.9

2

2.1

2.2

2.3

3

4

5

7

y

8.5

5

4.17

4.05

4.005

4

4.005

4.02

4.04

4.3

5

5.8

7.57

請觀察表中y值隨x值變化的特點(diǎn),完成以下的問題:

(1)函數(shù)(x>0)在區(qū)間(02)上遞減;函數(shù)在區(qū)間________上遞增.當(dāng)x=_________時(shí),_______.

(2)證明:函數(shù)(x>0)在區(qū)間(O,2)上遞減.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,已知點(diǎn),,坐標(biāo)分別為,,,為線段上一點(diǎn),直線軸負(fù)半軸交于點(diǎn),直線交于點(diǎn)。

(1)當(dāng)點(diǎn)坐標(biāo)為時(shí),求直線的方程;

(2)求面積之和的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】將函數(shù)y=2cos(2x+)的圖象向左平移個(gè)單位長度,得到函數(shù)y=fx)的圖象.

(1)求fx)的單調(diào)遞增區(qū)間;

(2)求fx)在[0,]上的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) 部分圖象如圖所示.
(Ⅰ)求φ值及圖中x0的值;
(Ⅱ)在△ABC中,A,B,C的對邊分別為a,b,c,已知 ,f(C)=﹣2,sinB=2sinA,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】的內(nèi)角的對邊分別為,已知

(1)求;

(2)若,求的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) ,其中 .

(1)當(dāng) 時(shí),求函數(shù) 處的切線方程;

(2)若函數(shù) 在定義域上有且僅有一個(gè)極值點(diǎn),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=sin(2x+ ),f′(x)是f(x)的導(dǎo)函數(shù),則函數(shù)y=2f(x)+f′(x)的一個(gè)單調(diào)遞減區(qū)間是(
A.[ , ]
B.[﹣ , ]
C.[﹣ , ]
D.[﹣ , ]

查看答案和解析>>

同步練習(xí)冊答案