【題目】如圖 ,在四棱錐中, , , 為棱的中點(diǎn), .

(1)證明: 平面

(2)若二面角的大小為,求直線與平面所成角的正弦值.

【答案】(1)見解析(2)

【解析】試題分析:(1)由已知條件得, ,再根據(jù)線面垂直判定定理得平面;(2)利用空間向量研究線面角,先根據(jù)條件建立空間直角坐標(biāo)系,設(shè)列各點(diǎn)坐標(biāo),利用方程組求平面一個(gè)法向量,再利用向量數(shù)量積求直線方向向量與法向量夾角余弦值,最后根據(jù)線面角與向量夾角互余關(guān)系確定直線與平面所成角的正弦值.

試題解析:(1)證明:由已知, ,

,即,

,

平面 .

(2)∵平面 ,∴為二面角的平面角,從而.

如圖所示,在平面內(nèi),作, 以為原點(diǎn),分別以所在直線為軸, 軸建立空間直角坐標(biāo)系

設(shè),則,

.

設(shè)平面的法向量,

,取,則.

設(shè)直線與平面所成角為,

.

∴直線與平面所成角的正弦值為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對(duì)于函數(shù)f(x)= ,存在一個(gè)正數(shù)b,使得f(x)的定義域和值域相同,則非零實(shí)數(shù)a的值為(
A.2
B.﹣2
C.﹣4
D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列、,其中, ,數(shù)列滿足,,數(shù)列滿足

(1)求數(shù)列的通項(xiàng)公式;

(2)是否存在自然數(shù),使得對(duì)于任意恒成立?若存在,求出的最小值;

(3)若數(shù)列滿足,求數(shù)列的前項(xiàng)和

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=sin2xcos2x2sinx cosxxR).

(Ⅰ)求f()的值.

(Ⅱ)求f(x)的最小正周期及單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,角A,B,C對(duì)應(yīng)的邊分別是a,b,c且cos2B+3cosB﹣1=0.
(1)求角B的大小;
(2)若a+c=1,求b的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,甲船以每小時(shí)15 海里的速度向正北方航行,乙船按固定方向勻速直線航行,當(dāng)甲船位于A1處時(shí),乙船位于甲船的南偏西75°方向的B1處,此時(shí)兩船相距20海里,當(dāng)甲船航行40分鐘到達(dá)A2處時(shí),乙船航行到甲船的南偏西45°方向的B2處,此時(shí)兩船相距10海里,問乙船每小時(shí)航行多少海里?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知等差數(shù)列{an}滿足a4=5,a2+a8=14,數(shù)列{bn}滿足b1=1,bn+1=2 bn
(1)求數(shù)列{an}和{bn}的通項(xiàng)公式;
(2)求數(shù)列{ }的前n項(xiàng)和;
(3)若cn=an ,求數(shù)列{cn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】直線過點(diǎn)P(﹣3,1),且與x軸,y軸分別交于A,B兩點(diǎn).
(Ⅰ)若點(diǎn)P恰為線段AB的中點(diǎn),求直線l的方程;
(Ⅱ)若 = ,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=2cos(x+ )[sin(x+ )﹣ cos(x+ )].
(1)求f(x)的值域和最小正周期;
(2)若對(duì)任意x∈[0, ],[f(x)+ ]﹣2m=0成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案