【題目】對于函數(shù)f(x)= ,存在一個(gè)正數(shù)b,使得f(x)的定義域和值域相同,則非零實(shí)數(shù)a的值為( )
A.2
B.﹣2
C.﹣4
D.4
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知橢圓C的中心為原點(diǎn)O,F(xiàn)(﹣2 ,0)為C的左焦點(diǎn),P為C上一點(diǎn),滿足|OP|=|OF|且|PF|=4,則橢圓C的方程為( )
A. =1
B. =1
C. =1
D. =1
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)是定義在R上的偶函數(shù),且當(dāng)x≤0時(shí),f(x)=x2+2x.現(xiàn)已畫出函數(shù)f(x)在y軸左側(cè)的圖象,如圖所示,根據(jù)圖象:
(1)寫出函數(shù)f(x),x∈R的增區(qū)間并將圖象補(bǔ)充完整;
(2)寫出函數(shù)f(x),x∈R的解析式;
(3)若函數(shù)g(x)=f(x)﹣4ax+2,x∈[1,3],求函數(shù)g(x)的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】.(本小題滿分14分)已知等比數(shù)列的公比為,首項(xiàng)為,其前項(xiàng)的和為.?dāng)?shù)列的前項(xiàng)的和為, 數(shù)列的前項(xiàng)的和為
(Ⅰ)若,,求的通項(xiàng)公式;(Ⅱ)①當(dāng)為奇數(shù)時(shí),比較與的大; ②當(dāng)為偶數(shù)時(shí),若,問是否存在常數(shù)(與n無關(guān)),使得等式恒成立,若存在,求出的值;若不存在,說明理由
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)有甲乙兩船,其中甲船在某島B的正南方A處,A與B相距7公里,甲船自A處以4公里/小時(shí)的速度向北方向航行,同時(shí)乙船以6公里/小時(shí)的速度自B島出發(fā),向北60°西方向航行,問分鐘后兩船相距最近.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)l為曲線C:y= 在點(diǎn)(1,0)處的切線.
(Ⅰ)求l的方程;
(Ⅱ)證明:除切點(diǎn)(1,0)之外,曲線C在直線l的下方.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=bax(a>0,且a≠1,b∈R)的圖象經(jīng)過點(diǎn)A(1,6),B(3,24).
(1)設(shè)g(x)= ﹣ ,確定函數(shù)g(x)的奇偶性;
(2)若對任意x∈(﹣∞,1],不等式( )x≥2m+1恒成立,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分12分)
已知函數(shù),且曲線在點(diǎn)處的切線與直線平行.
(1)求的值;
(2)判斷函數(shù)的單調(diào)性;
(3)求證:當(dāng)時(shí),
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖 ,在四棱錐中, , , 為棱的中點(diǎn), .
(1)證明: 平面;
(2)若二面角的大小為,求直線與平面所成角的正弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com