Processing math: 81%
6.已知在平面直角坐標(biāo)系xOy中的雙曲線C,它的中心在原點(diǎn),焦點(diǎn)在x軸上,F(xiàn)1,F(xiàn)2分別為左、右焦點(diǎn),F(xiàn)1(-5,0),離心率為5.
(Ⅰ)求雙曲線C的標(biāo)準(zhǔn)方程;
(Ⅱ)在雙曲線右支上一點(diǎn)P滿足|PF1|+|PF2|=14,試判定△PF1F2的形狀.

分析 (Ⅰ)利用,F(xiàn)1(-5,0),離心率為5,求出a,b,c,即可求雙曲線C的標(biāo)準(zhǔn)方程;
(Ⅱ)在雙曲線右支上一點(diǎn)P滿足|PF1|+|PF2|=14,根據(jù)雙曲線的定義,|PF1|-|PF2|=2a=2,利用勾股定理判定△PF1F2的形狀.

解答 解:(Ⅰ)設(shè)雙曲線的方程為x2a2y2b2=1,由題可知c=5,
e=ca=5,∴a=1,∴b2=c2-a2=24,…(2分)
∴雙曲線的方程為x2y224=1;…(4分)
(Ⅱ)根據(jù)雙曲線的定義,|PF1|-|PF2|=2a=2;…(6分)
∵|PF1|+|PF2|=14∴|PF1|=8,|PF2|=6,…(8分)
又∵|F1F2|=2c=10,
|PF1|2+|PF2|2=|F1F2|2,
∴△PF1F2是直角三角形.…(10分)

點(diǎn)評 本題考查雙曲線的方程與性質(zhì),考查雙曲線的定義,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知圓錐曲線E:x22+y2k=1.命題p:方程E表示焦點(diǎn)在x軸上的橢圓;命題q:圓錐曲線E的離心率e23,若命題¬p∧q為真命題,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知直線l1:2x-y+1=0,直線l2與l1關(guān)于直線y=-x對稱,則直線l2的方程為(  )
A.x-2y+1=0B.x+2y+1=0C.x-2y-1=0D.x+2y-1=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知圓心為C的圓經(jīng)過O(0,0))和A(4,0)兩點(diǎn),線段OA的垂直平分線和圓C交于M,N兩點(diǎn),且|MN|=25
(1)求圓C的方程
(2)設(shè)點(diǎn)P在圓C上,試問使△POA的面積等于2的點(diǎn)P共有幾個(gè)?證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.曲線y=x2+1在點(diǎn)P(-1,2)處的切線方程為(  )
A.y=-x+3B.y=-2x+4C.y=-x+1D.y=-2x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函數(shù)f(x)=lnx-2x,g(x)=12ax2
(Ⅰ)求函數(shù)f(x)的極值;
(Ⅱ)設(shè)函數(shù)h(x)=f(x)-g(x),若函數(shù)h(x)存在單調(diào)遞減區(qū)間,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知sinα+cosα=23,且0<α<π,則cosα-sinα=( �。�
A.233B.-233C.143D.-143

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知圓x2+y2=8內(nèi)有一點(diǎn)P0(-1,2),AB為過點(diǎn)P0且傾斜角為α的弦.
(1)當(dāng)α=\frac{3π}{4}時(shí),求AB的長;
(2)當(dāng)弦AB被點(diǎn)P0平分時(shí),寫出直線AB的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.在棱長為2的正四面體ABCD中,E,F(xiàn)分別是BC,AD的中點(diǎn),則\overrightarrow{AE}•\overrightarrow{CF}=( �。�
A.0B.-2C.2D.-3

查看答案和解析>>

同步練習(xí)冊答案