A. | $\frac{2\sqrt{3}}{3}$ | B. | -$\frac{2\sqrt{3}}{3}$ | C. | $\frac{\sqrt{14}}{3}$ | D. | -$\frac{\sqrt{14}}{3}$ |
分析 利用同角三角函數(shù)的基本關系,以及三角函數(shù)在各個象限中的符號,可得2sinαcosα=-$\frac{5}{9}$,α為鈍角,從而求得cosα-sinα=-$\sqrt{{(cosα-sinα)}^{2}}$ 的值.
解答 解:∵sinα+cosα=$\frac{2}{3}$,且0<α<π,∴1+2sinαcosα=$\frac{4}{9}$,∴2sinαcosα=-$\frac{5}{9}$,∴α為鈍角,
∴cosα-sinα=-$\sqrt{{(cosα-sinα)}^{2}}$=-$\sqrt{1-2sinαcosα}$=-$\sqrt{1+\frac{5}{9}}$=-$\frac{\sqrt{14}}{3}$,
故選:D.
點評 本題主要考查同角三角函數(shù)的基本關系,以及三角函數(shù)在各個象限中的符號,屬于基礎題.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | f(x)=lgx2,g(x)=2lgx | B. | f(x)=$\sqrt{x+2}$•$\sqrt{x-2}$,g(x)=$\sqrt{(x+2)(x-2)}$ | ||
C. | f(x)=x-2,g(x)=$\sqrt{({x-2)}^{2}}$ | D. | f(x)=lgx-2,g(x)=lg$\frac{x}{100}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{1}{a}$<$\frac{1}$ | B. | a2>ab | C. | $\frac{1}{{a{b^2}}}$>$\frac{1}{{{a^2}b}}$ | D. | a2>b2 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com