分析 利用構(gòu)造的新函數(shù)g(x)和h(x),求導(dǎo)數(shù)g′(x),從而可得a的范圍.
解答 解:令g(x)=(2-x)ex,h(x)=ax+a,
由題意知,存在2個(gè)正整數(shù),使g(x)在直線h(x)的上方,
∵g′(x)=(1-x)ex,
∴當(dāng)x>1時(shí),g′(x)<0,當(dāng)x<1時(shí),g′(x)>0,
∴g(x)max=g(1)=e,
且g(0)=2,g(2)=0,g(3)=-e3,
直線h(x)恒過點(diǎn)(-1,0),且斜率為a,∴
由題意可知,$\left\{\begin{array}{l}{h(1)<e}\\{h(2)<0}\\{h(3)≤-{e}^{3}}\end{array}\right.$,
故實(shí)數(shù)a的取值范圍是$[-\frac{e^3}{4},0)$.
故答案為$[-\frac{e^3}{4},0)$.
點(diǎn)評(píng) 本題考查導(dǎo)數(shù)的綜合應(yīng)用,及數(shù)形結(jié)合思想的應(yīng)用,考查學(xué)生分析解決問題的能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 甲廠高 | B. | 乙廠高 | ||
C. | 甲、乙兩廠相等 | D. | 甲、乙兩廠高低無法確定 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com