命題“?x∈R,x2+x-2≤0”的否定是
 
考點:命題的否定
專題:簡易邏輯
分析:直接利用特稱命題的否定是全稱命題寫出結果即可.
解答: 解:因為特稱命題的否定是全稱命題.所以,命題“?x∈R,x2+x-2>0”的否定為:?x∈R,x2+x-2>0.
故答案為:?x∈R,x2+x-2>0.
點評:本題考查命題的否定,特稱命題與全稱命題的否定關系,基本知識的考查.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

一個幾何體的三視圖如圖所示,則這個幾何體的體積為( 。
A、48-
3
B、
32π
3
C、64-
16π
3
D、
64π
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設a,b,c都是實數(shù).已知命題p:若a>b,則a+c>b+c;命題q:若a>b>0,則ac>bc.則下列命題中為真命題的是(  )
A、(?p)∨q
B、p∧q
C、(?p)∧(?q)
D、(?p)∨(?q)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

分別求出滿足下列條件的實數(shù)x,y的值
(1)2x-1+(y+1)i=x-y+(-x-y)i;
(2)
x2-x-6
x
+(x2-2x-3)i=0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若集合A={x|(k+1)x2+x-k=0}有且僅有兩個子集,求實數(shù)k的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)=
1
1-x
的定義域為M,函數(shù)g(x)=1n(1+x)的定義域為N,則( 。
A、M∩N=(-1,1]
B、CRN=(-∞,-1)
C、M∩N=R
D、∁RM=[1,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

定義:若數(shù)列{an}對任意的正整數(shù)n,都有|an+1|+|an|=d(d為常數(shù)),則稱{an}為“絕對和數(shù)列”,d叫做“絕對公和”,已知“絕對和數(shù)列”{an}中,a1=2,“絕對公和”d=2,則其前2013項和S2013的最小值為( 。
A、-2008
B、-2010
C、-2012
D、-2014

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=x-1-xlnx,(x>0)
(Ⅰ)求函數(shù)f(x)的最大值
(Ⅱ)設g(x)=
lnx
x-1
(x>1),試分析函數(shù)g(x)的單調性
(Ⅲ)利用(Ⅱ)的結論,證明:當n>m>0時,(1+n)m<(1+m)n

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

命題“若可導函數(shù)f(x)是奇函數(shù),則f′(x)是偶函數(shù)”的否命題是( 。
A、若可導函數(shù)f(x)是偶函數(shù),則f′(x)是奇函數(shù)
B、若可導函數(shù)f(x)是奇函數(shù),則f′(x)是奇函數(shù)
C、若可導函數(shù)f(x)是奇函數(shù),則f′(x)不是偶函數(shù)
D、若可導函數(shù)f(x)不是奇函數(shù),則f′(x)不是偶函數(shù)

查看答案和解析>>

同步練習冊答案