【題目】已知函數(shù)f(x)=x2-bx+3.
(1)若f(0)=f(4),求函數(shù)f(x)的零點(diǎn);
(2)若函數(shù)f(x)一個(gè)零點(diǎn)大于1,另一個(gè)零點(diǎn)小于1,求b的取值范圍.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】以下是新兵訓(xùn)練時(shí),某炮兵連8周中炮彈對(duì)同一目標(biāo)的命中情況的柱狀圖:
(1)計(jì)算該炮兵連這8周中總的命中頻率,并確定第幾周的命中頻率最高;
(2)以(1)中的作為該炮兵連炮兵甲對(duì)同一目標(biāo)的命中率,若每次發(fā)射相互獨(dú)立,且炮兵甲發(fā)射3次,記命中的次數(shù)為,求的數(shù)學(xué)期望;
(3)以(1)中的作為該炮兵連炮兵對(duì)同一目標(biāo)的命中率,試問至少要用多少枚這樣的炮彈同時(shí)對(duì)該目標(biāo)發(fā)射一次,才能使目標(biāo)被擊中的概率超過?(取)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某市居民用水原價(jià)為2.25元/立方米,從2010年1月1日起實(shí)行階梯式計(jì)價(jià):
級(jí)數(shù) | 計(jì)算水費(fèi)的用水量/立方米 | 單價(jià)/(元/立方米) |
1 | 不超過20立方米 | 1.8 |
2 | 超過20立方米至30立方米 | 2.4 |
3 | 超過30立方米 | p |
其中p是用水總量的一次函數(shù),已知用水總量為40立方米時(shí)p=3.0元/立方米,用水總量為50立方米時(shí)p=3.5元/立方米.
(1)寫出水價(jià)調(diào)整后居民每月水費(fèi)額與用水量的函數(shù)關(guān)系式.每月用水量在什么范圍內(nèi),水價(jià)調(diào)整后居民同等用水的水費(fèi)比調(diào)整前增加?
(2)用一個(gè)流程圖描述水價(jià)調(diào)整后計(jì)算水費(fèi)的主要步驟.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】求函數(shù)的值的程序框圖如圖所示.
(1)指出程序框圖中的錯(cuò)誤,并寫出算法;
(2)重新繪制解決該問題的程序框圖,并回答下面提出的問題.
①要使輸出的值為正數(shù),輸入的x的值應(yīng)滿足什么條件?
②要使輸出的值為8,輸入的x值應(yīng)是多少?
③要使輸出的y值最小,輸入的x值應(yīng)是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為創(chuàng)建全國(guó)文明城市,某區(qū)向各事業(yè)行政單位征集“文明過馬路”義務(wù)督導(dǎo)員.從符合條件的600名志愿者中隨機(jī)抽取100名,按年齡作分組如下:[20,25) , [25,30) , [30,35), [35,40) , [40,45] ,并得到如下頻率分布直方圖.
(Ⅰ)求圖中 的值,并根據(jù)頻率分布直方圖統(tǒng)計(jì)這600名志愿者中年齡在[30.40)的人數(shù);
(Ⅱ)在抽取的100名志愿者中按年齡分層抽取10名參加區(qū)電視臺(tái)“文明伴你行”節(jié)目錄制,再?gòu)倪@10名志愿者中隨機(jī)選取3名到現(xiàn)場(chǎng)分享勸導(dǎo)制止行人闖紅燈的經(jīng)歷,記這3名志愿者中年齡不低于35歲的人數(shù)為 ,求的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】經(jīng)過下列兩點(diǎn)的直線的斜率是否存在?如果存在,求其斜率,并確定直線的傾斜角α.
(1)A(2,3),B(4,5);
(2)C(-2,3),D(2,-1);
(3)P(-3,1),Q(-3,10).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) 的圖象過點(diǎn)。
(1)求的值并求函數(shù)的值域;
(2)若關(guān)于的方程有實(shí)根,求實(shí)數(shù)的取值范圍;
(3)若函數(shù), ,則是否存在實(shí)數(shù),使得函數(shù)的最大值為0?若存在,求出的值;若不存在,請(qǐng)說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線與函數(shù)的圖像相切于點(diǎn).
(1)求實(shí)數(shù)的值;
(2)證明除切點(diǎn)外,直線總在函數(shù)的圖像的上方;
(3)設(shè)是兩兩不相等的正實(shí)數(shù),且成等比數(shù)列,試判斷與的大小關(guān)系,并證明你的結(jié)論.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com