分析 由已知可得$\sqrt{\frac{{a}_{n}}{{a}_{n-1}}}$-1=2$\sqrt{\frac{{a}_{n-1}}{{a}_{n-2}}}$,構(gòu)造等比數(shù)列{$\sqrt{\frac{{a}_{n+1}}{{a}_{n}}}$+1}并求出其通項公式,進(jìn)而利用累乘法,可得數(shù)列{an}的通項公式.
解答 解:∵$\sqrt{{a}_{n}{a}_{n-2}}$-$\sqrt{{a}_{n-1}{a}_{n-2}}$=2an-1(n≥3),
∴$\sqrt{\frac{{a}_{n}•{a}_{n-2}}{{a}_{n-1}•{a}_{n-2}}}$-$\sqrt{\frac{{a}_{n-1}•{a}_{n-2}}{{a}_{n-1}•{a}_{n-2}}}$=2$\sqrt{\frac{{a}_{n-1}•{a}_{n-1}}{{a}_{n-1}•{a}_{n-2}}}$,
即$\sqrt{\frac{{a}_{n}}{{a}_{n-1}}}$-1=2$\sqrt{\frac{{a}_{n-1}}{{a}_{n-2}}}$,
即$\sqrt{\frac{{a}_{n}}{{a}_{n-1}}}$+1=2($\sqrt{\frac{{a}_{n-1}}{{a}_{n-2}}}$+1),
又∵a1=a2=1,
故$\sqrt{\frac{{a}_{2}}{{a}_{1}}}$+1=2,
即數(shù)列{$\sqrt{\frac{{a}_{n+1}}{{a}_{n}}}$+1}是以2為首項,以2為公比的等比數(shù)列,
故$\sqrt{\frac{{a}_{n+1}}{{a}_{n}}}$+1=2n,
故$\sqrt{\frac{{a}_{n+1}}{{a}_{n}}}$=2n-1,
∴$\sqrt{\frac{{a}_{n}}{{a}_{n-1}}}$=2n-1-1,
$\sqrt{\frac{{a}_{n-1}}{{a}_{n-2}}}$=2n-2-1,
…
$\sqrt{\frac{{a}_{3}}{{a}_{2}}}$=22-1,
$\sqrt{\frac{{a}_{2}}{{a}_{1}}}$=2-1,
累乘得:$\sqrt{{a}_{n}}$=(2n-1-1)•(2n-2-1)•…•(22-1)•(2-1).
故an=[(2n-1-1)•(2n-2-1)•…•(22-1)•(2-1)]2.
點評 本題考查的知識點是數(shù)列的遞推公式,等比數(shù)列,數(shù)列通項公式的求法,難度較大.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {1} | B. | [0,1] | C. | (0,1] | D. | [0,1) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | 1 | C. | $\sqrt{3}$ | D. | $\sqrt{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{4}{3}$,$\sqrt{2}$,$\frac{1}{5}$,$\frac{3}{10}$ | B. | $\sqrt{2}$,$\frac{4}{3}$,$\frac{3}{10}$,$\frac{1}{5}$ | C. | $\frac{3}{10}$,$\frac{1}{5}$,$\sqrt{2}$,$\frac{4}{3}$ | D. | $\frac{1}{5}$,$\frac{3}{10}$,$\frac{4}{3}$,$\sqrt{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | P<Q | B. | P>Q | C. | P=Q | D. | 無法確定 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 4 | B. | 3 | C. | 2 | D. | 1 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com