【題目】已知數(shù)列,,為數(shù)列的前項和,向量,,

(1)若,求數(shù)列通項公式;

(2)若,

證明:數(shù)列為等差數(shù)列;

②設(shè)數(shù)列滿足,問是否存在正整數(shù),,,,使得、成等比數(shù)列,若存在,求出、的值;若不存在,請說明理由.

【答案】(1);(2)見解析;存在,符合題意.

【解析】分析:(1)利用兩個向量平行的坐標關(guān)系得到,進而求解數(shù)列的通項公式;

(2)①,則,又由,兩式相減即可得到數(shù)列的遞推公式,進而得到數(shù)列的首項和公差,即可作出證明.

中由得到數(shù)列的通項公式,根據(jù)的范圍,討論可能的取值,即可得到結(jié)論.

詳解:(1)因為,,

得:,當(dāng),

當(dāng)時,

得:,

,所以,又,

所以是首項為2,公比為2的等比數(shù)列

所以

(2)①證明:因為,

當(dāng)時,,

得:

即:

得:

,所以數(shù)列為等差數(shù)列.

,,

所以數(shù)列是首項為,公差為的等差數(shù)列.

所以,

假設(shè)存在正整數(shù),,使得、、成等比數(shù)列,

,

可得:

整理得:,

,

一一代入檢驗

,為正整數(shù),,,所以存在,符合題意

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】以下四個命題: ①已知隨機變量X~N(0,σ2),若P(|X|<2)=a,則P(X>2)的值為 ;
②設(shè)a、b∈R,則“l(fā)og2a>log2b”是“2ab>1”的充分不必要條件;
③函數(shù)f(x)= ﹣( x的零點個數(shù)為1;
④命題p:n∈N,3n≥n2+1,則¬p為n∈N,3n≤n2+1.
其中真命題的序號為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直角梯形SABC中,∠B=∠C= ,D為邊SC上的點,且AD⊥SC,現(xiàn)將△SAD沿AD折起到達PAD的位置(折起后點S記為P),并使得PA⊥AB.
(1)求證:PD⊥平面ABCD;
(2)已知PD=AD,PD+AD+DC=6,G是AD的中點,當(dāng)線段PB取得最小值時,則在平面PBC上是否存在點F,使得FG⊥平面PBC?若存在,確定點F的位置,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知MOD函數(shù)是一個求余函數(shù),記MOD(m,n)表示m除以n的余數(shù),例如MOD(8,3)=2.如圖是某個算法的程序框圖,若輸入m的值為48時,則輸出i的值為(
A.7
B.8
C.9
D.10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】 (本小題滿分12)

已知圓C,直線過定點A (1,0).

1)若與圓C相切,求的方程;

2)若與圓C相交于PQ兩點,求三角形CPQ的面積的最大值,并求此時直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線 過坐標原點 ,圓 的方程為
(1)當(dāng)直線 的斜率為 時,求 與圓 相交所得的弦長;
(2)設(shè)直線 與圓 交于兩點 ,且 的中點,求直線 的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知雙曲線 ,以原點為圓心,雙曲線的實半軸長為半徑的圓與雙曲線的兩條漸近線相交于 四點,四邊形 的面積為 ,則雙曲線的離心率為( )
A.
B.2
C.
D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知曲線C1y=cos x,C2y=sin (2x+),則下面結(jié)論正確的是( )

A. C1上各點的橫坐標伸長到原來的2倍,縱坐標不變,再把得到的曲線向右平移個單位長度,得到曲線C2

B. C1上各點的橫坐標伸長到原來的2倍,縱坐標不變,再把得到的曲線向左平移個單位長度,得到曲線C2

C. C1上各點的橫坐標縮短到原來的倍,縱坐標不變,再把得到的曲線向右平移個單位長度,得到曲線C2

D. C1上各點的橫坐標縮短到原來的倍,縱坐標不變,再把得到的曲線向左平移個單位長度,得到曲線C2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐 中,底面 為矩形, 的中點, 的中點, 中點.

(1)證明: 平面 ;
(2)若平面 底面 , ,試在 上找一點 ,使 平面 ,并證明此結(jié)論.

查看答案和解析>>

同步練習(xí)冊答案