分析 設AC,BD交于點O,連結PO,則可證BD⊥平面PAC,故而∠BPO為所求角,利用勾股定理求出OB,PB即可得出sin∠BPO.
解答 解:連結AC,BD交于點O,連結OP,
∵PA⊥平面ABCD,BD?平面ABCD,
∴PA⊥BD,
∵四邊形ABCD是正方形,∴BD⊥AC,
又PA?平面PAC,AC?平面PAC,PA∩AC=A,
∴BD⊥平面PAC,
∴∠BPO為PB與平面PAC所成的角.
∵四邊形ABCD是正方形,AB=PA=a,
∴OB=$\frac{1}{2}BD$=$\frac{\sqrt{2}}{2}a$,PB=$\sqrt{2}a$,
∴sin∠BPO=$\frac{OB}{PB}$=$\frac{1}{2}$.
∴∠BPO=30°.
故答案為:30°.
點評 本題考查了線面垂直的判定,線面角的計算,屬于中檔題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com