19.一球內(nèi)切于棱長(zhǎng)為2的正方體,則該球的體積為$\frac{4}{3}π$該球表面積為4π.

分析 因?yàn)榍騼?nèi)切與正方體,所以求導(dǎo)直徑與正方體的棱長(zhǎng)相等,得到球的半徑,利用公式求體積和表面積.

解答 解:因?yàn)榍騼?nèi)切于棱長(zhǎng)為2的正方體,所以球的直徑等于正方體的棱長(zhǎng),所以球的半徑為1,
所以該球的體積為$\frac{4π}{3}$,該球表面積為4π;
故答案為:$\frac{4}{3}π$;4π.

點(diǎn)評(píng) 本題考查了正方體的內(nèi)切球的體積、表面積求法;關(guān)鍵是明確球的直徑與正方體的棱長(zhǎng)相等.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.如圖所示,墻上掛有邊長(zhǎng)為a的正方形木板,它的四個(gè)角的陰影部分都是以正方形的頂點(diǎn)為圓心,半徑為$\frac{a}{2}$的圓。橙讼虼税逋剁S,假設(shè)每次都能擊中木板,且擊中木板上每個(gè)點(diǎn)的可能性都相等,此人投鏢4000次,鏢擊中空白部分的次數(shù)是854次.據(jù)此估算:圓周率π約為3.146.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.定義:分子為1且分母為正整數(shù)的分?jǐn)?shù)稱為單位分?jǐn)?shù).我們可以把1分拆為若干個(gè)不同的單位分?jǐn)?shù)之和.如:1=$\frac{1}{2}+\frac{1}{3}+\frac{1}{6}$,1=$\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+\frac{1}{12}$,1=$\frac{1}{2}+\frac{1}{5}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}$,
依此類推可得:1=$\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{13}+\frac{1}{n}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+\frac{1}{90}+\frac{1}{110}+\frac{1}{132}+\frac{1}{156}$,其中n∈N*.設(shè)1≤x≤13,1≤y≤n,則$\frac{x+y+2}{x+1}$的最小值為( 。
A.$\frac{23}{2}$B.$\frac{8}{7}$C.$\frac{5}{2}$D.$\frac{34}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.在平面直角坐標(biāo)系中,曲線C的參數(shù)方程為$\left\{\begin{array}{l}{x=t}\\{y={t}^{2}-1}\end{array}\right.$(t為參數(shù)),點(diǎn)M(0,-1),以原點(diǎn)為極點(diǎn),x軸非負(fù)半軸為極軸,直線l:2ρcos(θ+$\frac{π}{6}$)+1=0,若直線l與曲線C相交于A,B兩點(diǎn),與y軸交于N點(diǎn),則|S△MAN-S△MBN|=$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.如皋市某電子廠生產(chǎn)一種儀器,由于受生產(chǎn)能力和技術(shù)水平的限制,會(huì)產(chǎn)生一些次品.根據(jù)經(jīng)驗(yàn)知道,該廠生產(chǎn)這種儀器,正品率P與日產(chǎn)量x(件)之間大體滿足關(guān)系:$\begin{array}{l}P=\left\{\begin{array}{l}1-\frac{1}{96-x}(1≤x≤c,x∈N,1≤c<96)\\ \frac{1}{3}(x>c,x∈N)\end{array}\right.\end{array}$
(注:正品率$P=\frac{合格品數(shù)}{生產(chǎn)量}$,如P=0.9表示每生產(chǎn)10件產(chǎn)品,約有9件為合格品,其余為次品.)已知每生產(chǎn)一件合格的儀器可以盈利A元,但每生產(chǎn)一件次品將虧損$\frac{A}{2}$元,故廠方希望定出合適的日產(chǎn)量,
(1)試將生產(chǎn)這種儀器每天的盈利額T(元)表示為日產(chǎn)量x(件)的函數(shù);
(2)當(dāng)日產(chǎn)量x為多少時(shí),可獲得最大利潤(rùn)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知四棱柱ABCD-A1B1C1D1的三視圖如圖所示.
(1)畫出此四棱柱的直觀圖,并求出四棱柱的體積;
(2)若E為AA1上一點(diǎn),EB∥平面A1CD,試確定E點(diǎn)位置,并證明EB⊥平面AB1C1D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.如圖,將平面直角坐標(biāo)系中的縱軸繞原點(diǎn)O順時(shí)針旋轉(zhuǎn)30°后,構(gòu)成一個(gè)斜坐標(biāo)平面xOy.在此斜坐標(biāo)平面xOy中,點(diǎn)P(x,y)的坐標(biāo)定義如下:過(guò)點(diǎn)P作兩坐標(biāo)軸的平行線,分別交兩軸于M、N兩點(diǎn),則M在Ox軸上表示的數(shù)為x,N在Oy軸上表示的數(shù)為y.那么以原點(diǎn)O為圓心的單位圓在此斜坐標(biāo)系下的方程為(  )
A.x2+y2+xy-1=0B.x2+y2+xy+1=0C.x2+y2-xy-1=0D.x2+y2-xy+1=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.在△ABC中,∠A、B、C對(duì)邊分別為a、b、c,A=60°,b=1,這個(gè)三角形的面積為$\sqrt{3}$,則a=( 。
A.2B.$\sqrt{10}$C.2$\sqrt{3}$D.$\sqrt{13}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.設(shè)矩形ABCD(AB>AD)的周長(zhǎng)為24,把△ABC沿AC向ADC折疊,AB折過(guò)去后交DC于P,設(shè)AB=x,則△ADP的最大面積為108-72$\sqrt{2}$;相應(yīng)的x=6$\sqrt{2}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案