A. | $[{\frac{27}{5},+∞})$ | B. | $[{\frac{11}{5},+∞})$ | C. | $[{\frac{3}{5},+∞})$ | D. | [2,+∞) |
分析 作出不等式組對應(yīng)的平面區(qū)域,利用數(shù)形結(jié)合進(jìn)行求解即可.
解答 解:作出不等式組對應(yīng)的平面區(qū)域如圖,
由不等式ax-y≥1得y≤ax-1,
要使y≤ax-1成立,則陰影部分在直線y=ax-1的下方,
由圖象知當(dāng)a>0時,只要A滿足條件即可,
由$\left\{\begin{array}{l}{x=1}\\{3x+5y=25}\end{array}\right.$得$\left\{\begin{array}{l}{x=1}\\{y=\frac{22}{5}}\end{array}\right.$,即A(1,$\frac{22}{5}$),
此時$\frac{22}{5}$≤a-1,即a≥$\frac{22}{5}$+1=$\frac{27}{5}$,
即實數(shù)a的取值范圍是$[{\frac{27}{5},+∞})$,
故選:A.
點評 本題主要考查線性規(guī)劃的應(yīng)用,利用數(shù)形結(jié)合是解決本題的關(guān)鍵.綜合性較強(qiáng),有一定的難度.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ①② | B. | ③④ | C. | ①③ | D. | ②④ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com