【題目】已知是函數(shù)圖象上的點(diǎn),是雙曲線在第四象限這一分支上的動點(diǎn),過點(diǎn)作直線,使其與雙曲線只有一個公共點(diǎn),且與軸、軸分別交于點(diǎn)、,另一條直線軸、軸分別交于點(diǎn)、

則(1)為坐標(biāo)原點(diǎn),三角形的面積為__________

(2)四邊形面積的最小值為__________

【答案】 (1)12 (2)48

【解析】(1)∵是函數(shù)圖象上的點(diǎn),故,即,則,設(shè)是雙曲線在第四象限這一分支上的動點(diǎn),則由題意得直線CD與雙曲線在第四象限這一分支相切,故直線CD的方程為:,令,可得,即C點(diǎn)坐標(biāo)為,令,可得,即D點(diǎn)坐標(biāo)為,故三角形OCD的面積(2)∵直線與x軸、y軸分別交于點(diǎn)A、B,則,,故四邊形面積,即四邊形ABCD面積的最小值為48,故答案為:12,48

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱柱中,每個側(cè)面均為正方形, 為底邊的中點(diǎn), 為側(cè)棱上的點(diǎn),且滿足平面.

(1)求證: 平面;

(2)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某食品店為了了解氣溫對銷售量的影響,隨機(jī)記錄了該店1月份中5天的日銷售量(單位:千克)與該地當(dāng)日最低氣溫(單位: )的數(shù)據(jù),如下表:

2

5

8

9

11

12

10

8

8

7

1)求出的回歸方程;

2)判斷之間是正相關(guān)還是負(fù)相關(guān);若該地1月份某天的最低氣溫為6,請用所求回歸方程預(yù)測該店當(dāng)日的營業(yè)額.

: 回歸方程, ,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知f(x)=loga (a>0,且a≠1).
(1)證明f(x)為奇函數(shù);
(2)求使f(x)>0成立的x的集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】 已知函數(shù)(a為常數(shù)).

(Ⅰ)當(dāng)時,求函數(shù)的單調(diào)區(qū)間;

(Ⅱ)當(dāng)時,不等式恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)= 是奇函數(shù),且f(2)=
(1)求實(shí)數(shù)m和n的值;
(2)判斷函數(shù)f(x)在(﹣∞,0)上的單調(diào)性,并加以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列函數(shù)中,既是偶函數(shù),又在(0,+∞)單調(diào)遞增的函數(shù)是(
A.y=﹣x2
B.y=2|x|
C.y=| |
D.y=lg|x|

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列函數(shù)在(0,+∞)上單調(diào)遞增的是(
A.
B.y=(x﹣1)2
C.y=21x
D.y=lg(x+3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】橢圓的左焦點(diǎn)為,直線與橢圓相交于點(diǎn),當(dāng)的周長最大時, 的面積是( 。

A. B. C. D.

查看答案和解析>>

同步練習(xí)冊答案