已知角α的終邊經(jīng)過點(diǎn)(3,4),sinα=
k
5
,則k=
 
考點(diǎn):任意角的三角函數(shù)的定義
專題:計算題,三角函數(shù)的求值
分析:由三角函數(shù)的定義求得sinα,即可得出結(jié)論.
解答: 解:∵角a的終邊經(jīng)過點(diǎn)(3,4),sinα=
k
5
,
∴sinα=
k
5
=
4
5
,
∴k=4.
故答案為:4
點(diǎn)評:本題考查任意角的三角函數(shù)的定義,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知:動點(diǎn)P、Q都在曲線C:
x=2cost
y=2sint
(t為參數(shù))上,對應(yīng)參數(shù)分別為t=a與t=2a(0<α<2π),M為PQ的中點(diǎn).
(Ⅰ)求M的軌跡的參數(shù)方程;
(Ⅱ)將M到坐標(biāo)原點(diǎn)的距離d表示為α的函數(shù),并判斷M的軌跡是否過坐標(biāo)原點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知∠ABC=90°,PA⊥平面ABC,若PA=AB=BC=1,則四面體PABC的外接球(頂點(diǎn)都在球面上)的表面積為( 。
A、π
B、
3
π
C、2π
D、3π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知各項(xiàng)均為正數(shù)的數(shù)列{an}滿足:2an=Sn+
1
2
,其中Sn為數(shù)列{an}的前n項(xiàng)和.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若an2=(
1
2
 bn,設(shè)cn=
bn
an
,Tn為數(shù)列{cn}的前n項(xiàng)和,設(shè)dn=
2nTn
n3-n
(n≥2),Jn=d2+d3+…+dn,求證:Jn
8
3
(n≥2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

化簡:
cos(2π-α)sin(3π+α)sin(π+α)
sin(π-α)cos(α-3π)sin(-π-α)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,O是平面上一定點(diǎn),A、B、C是平面上不共線的三個點(diǎn),動點(diǎn)P滿足
OP
=
OA
+λ(
AB
|
AB
|
+
AC
|
AC
|
)
,λ∈(0,+∞),則點(diǎn)P的軌跡一定通過△ABC的(  )
A、外心B、內(nèi)心C、重心D、垂心

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=sin2x的導(dǎo)數(shù)是( 。
A、cos2x
B、2xsin2x
C、2cos2x
D、2sin2x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖:將圓柱的側(cè)面沿母線AA1展開,得到一個長為2π,寬AA1為2的矩形.
(1)求此圓柱的體積;
(2)由點(diǎn)A拉一根細(xì)繩繞圓柱側(cè)面兩周到達(dá)A1,求繩長的最小值(繩粗忽略不計).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線ax+y+b=0與線段PQ有交點(diǎn)(交點(diǎn)不在線段端點(diǎn)處),其中點(diǎn)P(1,1),Q(2,1),求實(shí)數(shù)a,b滿足的關(guān)系式.

查看答案和解析>>

同步練習(xí)冊答案