【題目】已知函數(shù)是奇函數(shù)。

(1)求實(shí)數(shù)m的值;

(2)判斷函數(shù)f(x)(1,+∞)上的單調(diào)性,并給出證明;

(3)當(dāng)x(n,a-2),函數(shù)f(x)的值域是(1,+∞),求實(shí)數(shù)an的值.

【答案】(1) (2) (3) .

【解析】試題分析:

(1)由奇函數(shù)的性質(zhì)得到關(guān)于實(shí)數(shù)m的方程,解方程可得m=-1;

(2)結(jié)合(1)的結(jié)論首先確定函數(shù)的解析式,結(jié)合對數(shù)函數(shù)的性質(zhì)可知當(dāng)a>1,f(x)(1,+∞)上單調(diào)遞減; 當(dāng)0<a<1,f(x)(1,+∞)上單調(diào)遞增;

(3)結(jié)合奇函數(shù)的性質(zhì)和(2)中確定的函數(shù)的單調(diào)性得到關(guān)于實(shí)數(shù)a,n的方程組,分類討論求解方程組可得.

試題解析:

1)由為奇函數(shù),則對定義域任意恒有 (舍去1

(2)由(1)得,當(dāng)時,

當(dāng)時, 現(xiàn)證明如下:

設(shè),

(3)由題意知定義域上的奇函數(shù)。

①當(dāng)時,由(2)知在(n,a-2)f(x)為增函數(shù),

由值域?yàn)?/span>(1,+∞)無解;

②當(dāng)(n,a-2)(1,+∞)1≤n<a-2a>3,

由(2)知在(n,a-2)f(x)為減函數(shù),

由值域?yàn)?/span>

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列的通項(xiàng)公式分別為,將集合

中的元素從小到大依次排列,構(gòu)成數(shù)列;將集合

中的元素從小到大依次排列,構(gòu)成數(shù)列.

(1)求數(shù)列的通項(xiàng)公式;

(2)求數(shù)列的通項(xiàng)公式

(3)設(shè)數(shù)列的前項(xiàng)和為,求數(shù)列的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知橢圓C的中心為原點(diǎn)O,F(xiàn)(﹣2 ,0)為C的左焦點(diǎn),P為C上一點(diǎn),滿足|OP|=|OF|且|PF|=4,則橢圓C的方程為(

A. =1
B. =1
C. =1
D. =1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)處有極值.

)求實(shí)數(shù)的值;

)設(shè),討論函數(shù)在區(qū)間上的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知命題p:(x+1)(x﹣5)≤0,命題q:1﹣m≤x<1+m(m>0).
(1)若p是q的充分條件,求實(shí)數(shù)m的取值范圍;
(2)若m=5,“p∨q”為真命題,“p∧q”為假命題,求實(shí)數(shù)x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列命題正確的是(

A. 的圖像是一條直線

B. 冪函數(shù)的圖像都經(jīng)過點(diǎn)

C. 若冪函數(shù)是奇函數(shù),則是增函數(shù)

D. 冪函數(shù)的圖像不可能出現(xiàn)在第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)是定義在R上的偶函數(shù),且當(dāng)x≤0時,f(x)=x2+2x.現(xiàn)已畫出函數(shù)f(x)在y軸左側(cè)的圖象,如圖所示,根據(jù)圖象:

(1)寫出函數(shù)f(x),x∈R的增區(qū)間并將圖象補(bǔ)充完整;
(2)寫出函數(shù)f(x),x∈R的解析式;
(3)若函數(shù)g(x)=f(x)﹣4ax+2,x∈[1,3],求函數(shù)g(x)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】.(本小題滿分14分)已知等比數(shù)列的公比為,首項(xiàng)為,其前項(xiàng)的和為.?dāng)?shù)列的前項(xiàng)的和為, 數(shù)列的前項(xiàng)的和為

,求的通項(xiàng)公式;當(dāng)為奇數(shù)時,比較的大; 當(dāng)為偶數(shù)時,若,問是否存在常數(shù)(與n無關(guān)),使得等式恒成立,若存在,求出的值;若不存在,說明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本小題滿分12分)

已知函數(shù),且曲線在點(diǎn)處的切線與直線平行.

(1)求的值;

(2)判斷函數(shù)的單調(diào)性;

(3)求證:當(dāng)時,

查看答案和解析>>

同步練習(xí)冊答案