A. | [-1,0]∪[$\frac{1}{2}$,+∞) | B. | (-1,0)∪($\frac{1}{2}$,+∞) | C. | [-1,0]∪($\frac{1}{2}$,+∞) | D. | R |
分析 先化簡不等式,等價(jià)轉(zhuǎn)化后畫出數(shù)軸,利用穿根法求出不等式的解集.
解答 解:由$\frac{3{x}^{2}}{2x-1}-x≥0$得$\frac{{x}^{2}+x}{2x-1}≥0$,
即$\frac{x(x+1)}{2x-1}≥0$,所以$\left\{\begin{array}{l}{x(x+1)(2x-1)≥0}\\{2x-1≠0}\end{array}\right.$,
畫出圖象如右圖所示:
由圖得,不等式的解集是:
[-1,0]∪($\frac{1}{2}$,+∞),
故選:C.
點(diǎn)評 本題考查分式不等式、高次不等式的解法,以及穿根法的應(yīng)用,考查了轉(zhuǎn)化思想、數(shù)形結(jié)合思想.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | y=-4x,y=5x-4 | B. | y=4x-4,y=4x+3 | C. | y=4x,y=5x-4 | D. | y=4x,y=4x+3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com