9.下列說法正確的是( 。
A.若向量$\overrightarrow a$,$\overrightarrow b$共線則向量$\overrightarrow a$,$\overrightarrow b$的方向相同
B.若$\overrightarrow a$∥$\overrightarrow b$,$\overrightarrow b$∥$\overrightarrow c$則$\overrightarrow a$∥$\overrightarrow c$
C.向量$\overrightarrow{AB}$與向量$\overrightarrow{CD}$是共線向量則A,B,C,D四點在一條直線上
D.若$\overrightarrow a$=$\overrightarrow b$,$\overrightarrow b$=$\overrightarrow c$則$\overrightarrow a$=$\overrightarrow c$

分析 根據(jù)平面向量的有關概念,對選項中的命題進行分析、判斷即可.

解答 解:對于A,向量$\overrightarrow a$,$\overrightarrow b$共線時,向量$\overrightarrow a$,$\overrightarrow b$的方向相同或相反,故命題錯誤;
對于B,$\overrightarrow a$∥$\overrightarrow b$,$\overrightarrow b$∥$\overrightarrow c$時,$\overrightarrow a$∥$\overrightarrow c$在$\overrightarrow b$=$\overrightarrow{0}$時不一定成立,故命題錯誤;
對于C,向量$\overrightarrow{AB}$與向量$\overrightarrow{CD}$是共線向量,則A,B,C,D四點不一定在一條直線上,
如平行四邊形ABDC中,$\overrightarrow{AB}$=$\overrightarrow{CD}$,故命題錯誤;
對于D,當$\overrightarrow a$=$\overrightarrow b$,$\overrightarrow b$=$\overrightarrow c$時,$\overrightarrow a$=$\overrightarrow c$,命題正確.
故選:D.

點評 本題考查了平面向量的有關概念與應用問題,是基礎題目.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

19.比較下列各組中兩個代數(shù)式的大小:
(1)x2-x與x-2;
(2)已知a,b為正數(shù),且a≠b比較a3+b3與a2b+ab2的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.在棱長為2R的無蓋立方體容器內裝滿水,先將半徑為R的球放入水中然后再放入一個球,使它完全浸入水中,要使溢出的水量最大,則此球的半徑是( 。
A.($\sqrt{3}$-1)RB.$\frac{2-\sqrt{3}}{2}$RC.(2-$\sqrt{3}$)RD.$\frac{\sqrt{3}-1}{2}$R

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.8個相同的小球放入5個不同盒子中,每盒不空的放法共有35種.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.若x,y∈R,且x2+y2=4,那么x2-2$\sqrt{3}$xy-y2的最大值為( 。
A.2B.2$\sqrt{2}$C.6D.8

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.給出下列命題:
①若等比數(shù)列{an}的前n項和為Sn,則S100,S200-S100,S300-S200成等比數(shù)列;
②已知等差數(shù)列{an},{bn}的前n項和分別為An,Bn,且滿足$\frac{{A}_{n}}{{B}_{n}}$=$\frac{2n}{n+3}$,則$\frac{{a}_{1}+{a}_{2}+{a}_{12}}{_{2}+_{4}+_{9}}$=$\frac{3}{2}$;
③已知點P(x,y)到A(0,4)和B(-2,0)的距離相等,則2x+4y的最小值為4$\sqrt{2}$
④若關于x的不等式(a2-1)x2-(a-1)x-1<0的解集為R,則a的取值范圍為(-$\frac{3}{5}$,-1).
⑤若b2=ac且cos(A-C)=$\frac{3}{2}$-cosB,則B=$\frac{π}{3}$.
其中正確的是②③⑤你認為正確的命題序號都填上).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.已知x,y滿足約束條件$\left\{{\begin{array}{l}{x-2y≥0}\\{2x+2y-3≤0}\\{y≥\frac{1}{4}}\end{array}}\right.$,則z=2x-y的最大值為$\frac{9}{4}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.函數(shù)f(x)=Asin2(ωx+φ)(A>0,ω>0,0<φ<$\frac{π}{2}$),已知y=f(x)的最大值為2,其圖象相鄰兩對稱軸的距離為2,并過點(1,2).
(1)求φ;
(2)求f(1)+f(2)+f(3)+…+(2015)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.某市為了緩解交通壓力,提倡低碳環(huán)保,鼓勵市民乘坐公共交通系統(tǒng)出行.為了更好地保障市民出行,合理安排運力,有效利用公共交通資源合理調度,在某地鐵站點進行試點調研市民對候車時間的等待時間(候車時間不能超過20分鐘),以便合理調度減少候車時間,使市民更喜歡選擇公共交通.為此在該地鐵站的一些乘客中進行調查分析,得到如下統(tǒng)計表和各時間段人數(shù)頻率分布直方圖:
分組等待時間(分鐘)人數(shù)
第一組[0,5)10
第二組[5,10)a
第三組[10,15)30
第四組[15,20)10
(Ⅰ)求出a的值;要在這些乘客中用分層抽樣的方法抽取10人,在這10個人中隨機抽取3人至少一人來自第二組的概率;
(Ⅱ)從這10人中隨機抽取3人進行問卷調查,設這3個人共來自X個組,求X的分布列及數(shù)學期望.

查看答案和解析>>

同步練習冊答案