7.先將函數(shù)y=ln$\frac{1}{3-x}$的圖象向右平移3個單位,再將所得圖象關(guān)于原點(diǎn)對稱得到y(tǒng)=f(x)的圖象,則y=f(x)的解析式是f(x)=lnx.

分析 依據(jù)各步的規(guī)則進(jìn)行圖象變換逐步求出相應(yīng)的函數(shù)解析式即可.

解答 解:函數(shù)y=ln$\frac{1}{3-x}$的圖象右平移3個單位得到y(tǒng)=ln$\frac{1}{-x}$的圖象,而y=ln$\frac{1}{-x}$的圖象關(guān)于原點(diǎn)對稱的函數(shù)是y=lnx,
故答案為:f(x)=lnx.

點(diǎn)評 本題考查了函數(shù)的圖象變換以及函數(shù)解析式的求解,熟練掌握圖象的對稱變換、平移變換是解決本題的基礎(chǔ).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知圓⊙O過三點(diǎn)A(-3,-4),B(3,4),C(5,0).
(1)求⊙O方程.
(2)求過點(diǎn)(-5,-3)的圓⊙O的切線方程.
(3)過△ABC的重心T作⊙O互相垂直的兩條弦PQ,GH,求四邊形PGQH面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.P為橢圓$\frac{{y}^{2}}{5}$+$\frac{{x}^{2}}{4}$=1上的一點(diǎn),F(xiàn)1,F(xiàn)2為焦點(diǎn),且∠F1PF2=30°.
(1)求△F1PF2的周長;
(2)求|PF1|•|PF2|;
(3)求△F1PF2的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.在平面直角坐標(biāo)系xOy,已知平面區(qū)域A={(x,y)|x+y≤2,x≥0,y≥0},則平面區(qū)域B={(x+y,x-y)|(x,y)∈A}的面積為4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.方程${x^2}+{y^2}+ax-2ay+a+\frac{1}{4}=0$為圓的方程,則a的范圍為$(-∞,-\frac{1}{5})∪(1,+∞)$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知向量$\overrightarrow{a}$=(2cosx,$\sqrt{3}$sinx),$\overrightarrow$=(cosx,2cosx),函數(shù)f(x)=$\overrightarrow{a}•\overrightarrow+m(m∈R)$,且當(dāng)x∈[0,$\frac{π}{2}$]時,f(x)的最小值為2.
(Ⅰ)求f(x)的單調(diào)遞增區(qū)間;
(Ⅱ)先將函數(shù)y=f(x)的圖象上的點(diǎn)縱坐標(biāo)不變,橫坐標(biāo)縮小到原來的$\frac{1}{2}$,再把所得的圖象向右平移$\frac{π}{12}$個單位,得到函數(shù)y=g(x)的圖象,求方程g(x)=4在區(qū)間[0,$\frac{π}{2}$]上所有根之和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知x2-4x-a≤0在x∈[0,1]上恒成立,則實(shí)數(shù)a的取值范圍是[0,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.?dāng)?shù)列{an}中,前n項(xiàng)和為Sn,a1≠a2,Sn=pnan
  (1)求p的值;
  (2)確定數(shù)列{an}是否為等差數(shù)列或等比數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.等比數(shù)列{an}中,a4a10=16,則a7=±4.

查看答案和解析>>

同步練習(xí)冊答案