A. | $\frac{20\sqrt{5}}{3}$π | B. | $\frac{8\sqrt{2}}{3}$π | C. | 20π | D. | 8π |
分析 求出底面三角形的面積,利用三棱錐的體積求出S到底面的距離,求出底面三角形的所在平面圓的半徑,通過(guò)勾股定理求出球的半徑,即可求解球的體積.
解答 解:三棱錐S-ABC,A、B、C三點(diǎn)均在球心O的表面上,且AB=BC=2,∠ABC=120°,
∴由余弦定理可得AC=2$\sqrt{3}$,
∴△ABC外接圓半徑2r=$\frac{2\sqrt{3}}{sin120°}$=4,即r=2
∴S△ABC=$\frac{1}{2}$×2×2×sin120°=$\sqrt{3}$,
∵三棱錐S-ABC的體積為$\sqrt{3}$,
∴S到底面ABC的距離h=3,
設(shè)O到平面ABC的距離為d
如圖所示,由平面SAC⊥平面ABC,可得SD=3,
利用勾股定理可得R2=(3-d)2+(2-1)2,22+d2=R2,
∴d=1,R=$\sqrt{5}$
球的體積:$\frac{4}{3}$πR3=$\frac{20\sqrt{5}}{3}$π.
故選:A.
點(diǎn)評(píng) 本題考查球的體積的求法,球的內(nèi)含體與三棱錐的關(guān)系,考查空間想象能力以及計(jì)算能力.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 3 | B. | 2 | C. | 1 | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{3}{2}$ | B. | -$\frac{3}{2}$ | C. | -$\frac{2}{3}$ | D. | $\frac{2}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com