14.已知sin(π+α)=-$\frac{1}{3}$,則$\frac{sin2α}{cosα}$=(  )
A.$\frac{3}{2}$B.-$\frac{3}{2}$C.-$\frac{2}{3}$D.$\frac{2}{3}$

分析 由已知利用誘導公式可求sinα的值,利用二倍角公式化簡所求后即可計算求值得解.

解答 解:∵sin(π+α)=-sinα=-$\frac{1}{3}$,可得:sinα=$\frac{1}{3}$,
∴$\frac{sin2α}{cosα}$=$\frac{2sinαcosα}{cosα}$=2sinα=2×$\frac{1}{3}$=$\frac{2}{3}$.
故選:D.

點評 本題主要考查了誘導公式,二倍角公式在三角函數(shù)化簡求值中的應用,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

4.過點P(l,-$\sqrt{3}$)的直線l截圓x2+y2=5所得弦長不小于4,則直線l的傾斜角的取值范圍是( 。
A.[$\frac{π}{6}$,$\frac{π}{3}$]B.[$\frac{π}{3}$,$\frac{2π}{3}$]C.[$\frac{π}{2}$,$\frac{5π}{6}$]D.[$\frac{2π}{3}$,π]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.三棱錐S-ABC中,側(cè)棱SA⊥平面ABC,底面ABC是邊長為$\sqrt{3}$的正三角形,SA=2$\sqrt{3}$,則該三棱錐的外接球體積等于$\frac{32}{3}$π.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.已知角x始邊與x軸的非負半軸重合,與圓x2+y2=4相交于點A,終邊與圓x2+y2=4相交于點B,點B在x軸上的射影為C,△ABC的面積為S(x),函數(shù)y=S(x)的圖象大致是( 。
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.在直四棱柱ABCD-A1B1C1D1中,底面ABCD是正方形,AB=2,AA1=2$\sqrt{3}$,點A、B、C、D在球O的表面上,球O與BA1的另一個交點為E,與CD1的另一個交點為F,且AE⊥BA1,則球O的表面積為8π.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.一塊邊長為8cm的正方形鐵板按如圖所示的陰影部分裁下,然后用余下的四個全等的等腰三角形加工成一個正四棱錐(底面是正方形,從頂點向底面作垂線,垂足為底面中心的四棱錐)形容器,O為底面ABCD的中心,則側(cè)棱SC與底面ABCD所成角的余弦值為( 。
A.$\frac{{2\sqrt{3}}}{5}$B.$\frac{{3\sqrt{2}}}{5}$C.$\frac{4}{5}$D.$\frac{3}{5}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.在體積為$\sqrt{3}$的三棱錐S-ABC中,AB=BC=2,∠ABC=120°,SA=SC,且平面SAC⊥平面ABC,若該三棱錐的四個頂點都在同一球面上,則該球的體積為( 。
A.$\frac{20\sqrt{5}}{3}$πB.$\frac{8\sqrt{2}}{3}$πC.20πD.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.(文科做)$\overrightarrow m$=($\sqrt{3}$sinx,cosx),$\overrightarrow n$=(3$\sqrt{3}$,1),且$\overrightarrow m$∥$\overrightarrow n$,則$\frac{sin2x}{1+cos2x}$的值為( 。
A.2B.3C.4D.6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.從某學校的800名男生中隨機抽取50名測量身高,被測學生身高全部介于155cm和195cm之間,將測量結(jié)果按如下方式分成八組:第一組[155,160),第二組[160,165),…,第八組[190,195],如圖是按上述分組方法得到的頻率分布直方圖的一部分,已知第一組與第八組人數(shù)相同,第七組的人數(shù)為3人.
(Ⅰ)求第六組的頻率;
(Ⅱ)若從身高屬于第六組和第八組的所有男生中隨機抽取2人,記他們的身高分別為x,y,事件E={|x-y|≤5},求事件E的頻率P(E);
(Ⅲ)對抽取的50名學生作調(diào)查,得到以下2×2列聯(lián)表:
喜歡打籃球不喜歡打籃球總計
身高超過175cm20626
身高不超175cm51924
總計252550
根據(jù)此表判斷是否有99.9%的把握認為喜歡打籃球和身高超過175cm有關系.
參考公式::K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$(其中n=(a+b)(c+d)(a+c)(b+d))
參考數(shù)據(jù):
P(K2≥k)0.500.400.250.150.100.050.0250.0100.0050.001
k0.4550.7081.3232.7022.7063.8415.0246.6357.87910.828

查看答案和解析>>

同步練習冊答案