已知函數(shù)f(x)=
ax-3
2x+1
在區(qū)間(-
1
2
,+∞)上為減函數(shù),求實(shí)數(shù)a的取值范圍.
考點(diǎn):函數(shù)單調(diào)性的判斷與證明
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:當(dāng)x>-
1
2
時(shí),函數(shù)的導(dǎo)函數(shù)f′(x)<0,解不等式可求實(shí)數(shù)a的取值范圍.
解答: 解:由題意得,當(dāng)x>-
1
2
,f′(x)=
a(2x+1)-2(ax-3)
(2x+1)2
=
a+6
(2x+1)2
<0,解得a<-6.
故實(shí)數(shù)a的取值范圍是(-∞,-6).
點(diǎn)評(píng):本題主要考察函數(shù)的單調(diào)性和導(dǎo)數(shù)的關(guān)系,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

對(duì)于R上可導(dǎo)的任意函數(shù)f(x),若滿足(x-2)f′(x)≤0,則必有(  )
A、f(1)+f(3)≤2f(2)
B、f(1)+f(3)≥2f(2)
C、f(1)+f(3)<2f(2)
D、f(1)+f(3)>2f(2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

定義在R上的函數(shù)f(x)滿足:對(duì)任意的a,b∈R,總有f(a+b)-[f(a)+f(b)]=2014,則函數(shù)g(x)=f(x)+2014的奇偶性為( 。
A、奇函數(shù)
B、偶函數(shù)
C、既是奇函數(shù)又是偶函數(shù)
D、非奇非偶函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
x
+x5+sinx
x2
,求函數(shù)f(x)的導(dǎo)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知圓O:x2+y2=r2(r>0)與直線x-y+2
2
=0相切.
(1)求圓O的方程;
(2)過點(diǎn)(1,
3
3
)的直線l截圓所得弦長(zhǎng)為2
3
,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合T={4,4t,4t2},M={4,4-d,4-2d},其中d,t∈R,若M=T,求t和d的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)y=f(n),滿足f(0)=64,且f(n)=
1
2
f(n-1)+2,n∈N,則f(4)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)a=
1
sin10°
-
3
cos10°
,則(
1+i
1-i
)
4
a
的值是( 。
A、-iB、iC、-2iD、2i

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

過點(diǎn)P(1,-2),且在兩坐標(biāo)軸上截距的絕對(duì)值相等的直線有
 
條.

查看答案和解析>>

同步練習(xí)冊(cè)答案