12.公差不為零的等差數(shù)列{an}中,a3=9且a3,a6,a10成等比數(shù)列,
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)求前27項(xiàng)的和S27

分析 (1)設(shè)公差為d(d≠0),運(yùn)用等差數(shù)列的通項(xiàng)公式和等比數(shù)列的性質(zhì),解方程可得d=1,即可得到所求通項(xiàng)公式;
(2)運(yùn)用等差數(shù)列的求和公式,計(jì)算即可得到所求值.

解答 解:(1)設(shè)公差為d(d≠0),
由題意得a62=a3a10,a3=9,
則(9+3d)2=9(9+3d)得d=1,
則an=a3+(n-3)d=9+n-3=n+6;       
(2)前27項(xiàng)的和S27=27a1+$\frac{1}{2}$×27×26×1
=27×7+27×13=540.

點(diǎn)評 本題考查等差數(shù)列的通項(xiàng)公式和求和公式的運(yùn)用,以及等比數(shù)列的性質(zhì),考查運(yùn)算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.設(shè)集合M={x|x=90°k+45°,k∈Z},N={x|x=180°k±45°,k∈Z},則M、N的關(guān)系是( 。
A.M=NB.M≠NC.M?ND.N?M

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.若m,n,x,y滿足m2+n2=a,x2+y2=b,則mx+ny的最大值是$\sqrt{ab}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.在△ABC中,a,b,c分別為角A,B,C所對的邊,若a2<b2-c2,則△ABC的形狀為( 。
A.銳角三角形B.直角三角形C.鈍角三角形D.不能確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知一個(gè)樣本容量為100的樣本數(shù)據(jù)的頻率分布直方圖如圖所示,樣本數(shù)據(jù)落在[80,100]內(nèi)的頻數(shù)為35.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.在數(shù)列{an}中,a1=$\frac{1}{2}$,an+1=1-$\frac{1}{{a}_{n}}$,n∈N*,則a10=$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$,設(shè)右焦點(diǎn)為F1,離心率為e.
(1)若橢圓過點(diǎn)$(\sqrt{2},\sqrt{3})$,$e=\frac{{\sqrt{2}}}{2}$,求橢圓的標(biāo)準(zhǔn)方程;
(2)若橢圓的焦距為4,設(shè)A、B為橢圓上關(guān)于原點(diǎn)對稱的兩點(diǎn),且A、B在圓O:x2+y2=4上,設(shè)直線AB的斜率為k,若$k≥\sqrt{3}$,求e的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知log53=a,5b=2,則5a+2b=12.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知函數(shù)y=f(x)為R上的奇函數(shù),且x≥0時(shí),f(x)=x2+2x-2x+1+a,則f(-1)=-1.

查看答案和解析>>

同步練習(xí)冊答案