1.在平面直角坐標(biāo)系xOy中,點(diǎn)A(-2,6)關(guān)于直線(xiàn)3x-4y+5=0的對(duì)稱(chēng)點(diǎn)的坐標(biāo)為(4,-2).

分析 設(shè)出點(diǎn)A關(guān)于直線(xiàn)l對(duì)稱(chēng)點(diǎn)B的坐標(biāo),根據(jù)題意列出方程組,解方程組即可.

解答 解:設(shè)點(diǎn)A關(guān)于直線(xiàn)l:3x-4y+5=0對(duì)稱(chēng)點(diǎn)B的坐標(biāo)為(a,b),
則$\left\{\begin{array}{l}{3•\frac{a-2}{2}-4•\frac{b+6}{2}+5=0}\\{\frac{b-6}{a+2}•\frac{3}{4}=-1}\end{array}\right.$,
即$\left\{\begin{array}{l}{3a-4b=20}\\{4a+3b=10}\end{array}\right.$,
解得a=4,b=-2,
所以點(diǎn)B的坐標(biāo)為(4,-2).
故答案為:(4,-2).

點(diǎn)評(píng) 本題考查了點(diǎn)關(guān)于直線(xiàn)對(duì)稱(chēng)點(diǎn)的求法問(wèn)題,也考查了方程組的解法與應(yīng)用問(wèn)題,是基礎(chǔ)題目.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.在平面直角坐標(biāo)系xOy中,已知△ABC頂點(diǎn)B(-2,0)和C(2,0),頂點(diǎn)A在橢圓$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{12}$=1上,則$\frac{sinB+sinC}{sinA}$=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.已知函數(shù)f(x)=x2-2x,g(x)=ax+2(a>0),若對(duì)任意x1∈R,都存在x2∈[-2,+∞),使得f(x1)>g(x2),則實(shí)數(shù)a的取值范圍是( 。
A.$({\frac{3}{2},+∞})$B.(0,+∞)C.$({0,\frac{3}{2}})$D.$({\frac{3}{2},3})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.已知冪函數(shù)y=f(x)的圖象過(guò)點(diǎn)$({3,\sqrt{3}})$,則log2f(2)的值為( 。
A.$\frac{1}{2}$B.$-\frac{1}{2}$C.1D.-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.如圖,點(diǎn)P從點(diǎn)O出發(fā),分別按逆時(shí)針?lè)较蜓刂荛L(zhǎng)均為12的正三角形、正方形運(yùn)動(dòng)一周,O,P兩點(diǎn)連線(xiàn)的距離y與點(diǎn)P走過(guò)的路程x的函數(shù)關(guān)系分別記為y=f(x),y=g(x),定義函數(shù)h(x)=$\left\{\begin{array}{l}f(x),f(x)≤g(x)\\ g(x),f(x)>g(x)\end{array}$考查下列結(jié)論:
①h(4)=$\sqrt{10}$;
②函數(shù)h(x)的圖象關(guān)于直線(xiàn)x=6對(duì)稱(chēng);
③函數(shù)h(x)值域?yàn)?[{0,\sqrt{13}}]$;
④函數(shù)h(x)增區(qū)間為(0,5).
其中正確的結(jié)論是①②③.(寫(xiě)出所有正確結(jié)論的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.設(shè)F1,F(xiàn)2是雙曲線(xiàn)$\frac{x^2}{8}-{y^2}$=1的兩個(gè)焦點(diǎn),點(diǎn)P在雙曲線(xiàn)上,且∠F1PF2=90°,則點(diǎn)P到x軸的距離為( 。
A.$\sqrt{7}$B.3C.$\frac{1}{3}$D.$\frac{{\sqrt{7}}}{7}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.已知數(shù)列{an}的其前n項(xiàng)和Sn=n2-6n,則數(shù)列{|an|}前10項(xiàng)和為( 。
A.58B.56C.50D.45

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.設(shè)函數(shù)g(x)=3x,h(x)=9x
(1)解方程:h(x)-24g(x)-h(2)=0;
(2)令$p(x)=\frac{h(x)}{h(x)+3}$,求$p(\frac{1}{2015})+p(\frac{2}{2015})+p(\frac{3}{2015})+…+p(\frac{2014}{2015})$的值;
(3)若$f(x)=\frac{g(x+1)+a}{g(x)+b}$是實(shí)數(shù)集R上的奇函數(shù),且f(h(x)-1)+f(2-k•g(x))>0對(duì)任意實(shí)數(shù)x恒成立,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知二次函數(shù)f(x)=x2+bx+c,方程f(x)-x=0的兩個(gè)根x1,x2滿(mǎn)足0<x1<x2<1.
(Ⅰ)當(dāng)x∈(0,x1)時(shí),證明:x<f(x)<x1;
(Ⅱ)設(shè)函數(shù)f(x)的圖象關(guān)于直線(xiàn)x=x0對(duì)稱(chēng),證明:x0<$\frac{x_1}{2}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案