命題p:a∈M={x|x2-x<0};命題q:a∈N={x|x<2};p是q的
 
條件.
考點(diǎn):必要條件、充分條件與充要條件的判斷
專題:簡(jiǎn)易邏輯
分析:命題p:a∈M={x|x2-x<0},解出0<x<1;命題q:a∈N={x|x<2},然后判斷充要條件.
解答: 解:命題p:a∈M={x|x2-x<0},可知x2-x<0時(shí)M={x|0<x<1};
命題q:a∈N={x|x<2},顯然a∈M則a∈N,即p⇒q;
a∈N時(shí)則a不一定∈M,q不能推出p,p是q的充分不必要條件.
故答案為:充分不必要.
點(diǎn)評(píng):判斷充要條件的方法是:
①若p⇒q為真命題且q⇒p為假命題,則命題p是命題q的充分不必要條件;
②若p⇒q為假命題且q⇒p為真命題,則命題p是命題q的必要不充分條件;
③若p⇒q為真命題且q⇒p為真命題,則命題p是命題q的充要條件;
④若p⇒q為假命題且q⇒p為假命題,則命題p是命題q的即不充分也不必要條件.
⑤判斷命題p與命題q所表示的范圍,再根據(jù)“誰(shuí)大誰(shuí)必要,誰(shuí)小誰(shuí)充分”的原則,判斷命題p與命題q的關(guān)系.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列函數(shù)f(x)中,滿足“對(duì)任意x1,x2∈(0,+∞),都有
f(x1)-f(x2)
x1-x2
<0”的是(  )
A、f(x)=ex
B、f(x)=(x-1)2
C、f(x)=
1
2x
D、f(x)=︳x+1 ︳

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

計(jì)算:
(1)[125 
2
3
+(
1
16
 
1
2
+343 
1
3
] 
1
2

(2)[
1
4
(0.027 
2
3
+50×0.0016 
3
4
)] -
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知tanθ+sinθ=a,tanθ-sinθ=b,求證:(a2-b22=16ab.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)映射f:x→x2是集合A到集合B的映射,如果B={1,4},那么A∩B可能是(  )
A、∅B、∅或{1}
C、{1}D、不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

一元二次方程ax2+4x+3=0(a≠0)有一個(gè)正根和一個(gè)負(fù)根的充分不必要條件是( 。
A、a<0B、a>0
C、a<-1D、a>1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}的前n項(xiàng)和為Sn,且Sn=2(an+1),則a7=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x+1)=x2-3x+2
(1)求f(2)和f(a)的值;
(2)求f(x)與f(x-1)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知Sn為等差數(shù)列{an}的前n項(xiàng)和,若a1+a7+a13的值是一確定的常數(shù),則下列各式:①a21;②a7;③S13;④S14;⑤S8-S5.其結(jié)果為確定常數(shù)的是( 。
A、②③⑤B、①②⑤
C、②③④D、③④⑤

查看答案和解析>>

同步練習(xí)冊(cè)答案