分析 (1)由滿足a1=1,nSn+1-(n+1)Sn=$\frac{{n({n+1})}}{2}$,n∈N*.令n=1即可得出.
(2)解法1:由$n{S_{n+1}}-({n+1}){S_n}=\frac{{n({n+1})}}{2}$,得$\frac{{{S_{n+1}}}}{n+1}-\frac{S_n}{n}=\frac{1}{2}$.利用等差數(shù)列的通項公式及其遞推式即可得出;
解法2:由$n{S_{n+1}}-({n+1}){S_n}=\frac{{n({n+1})}}{2}$,得$n({{S_{n+1}}-{S_n}})-{S_n}=\frac{{n({n+1})}}{2}$,可得$n{a_{n+1}}-{S_n}=\frac{{n({n+1})}}{2}$. 再利用遞推式即可得出.
(3)由(2)知an=n,${S_n}=\frac{{n({n+1})}}{2}$.假設(shè)存在正整數(shù)k,使ak,S2k,a4k成等比數(shù)列,可得$S_{2k}^2={a_k}•{a_{4k}}$.即${[{\frac{{2k({2k+1})}}{2}}]^2}=k•4k$.解出即可判斷出.
解答 (1)解:∵a1=1,$n{S_{n+1}}-({n+1}){S_n}=\frac{{n({n+1})}}{2}$,
∴${S_2}-2{S_1}=\frac{1×2}{2}=1$.
∴S2=1+2S1=1+2a1=3.
∴a2=S2-a1=2.
(2)解法1:由$n{S_{n+1}}-({n+1}){S_n}=\frac{{n({n+1})}}{2}$,得$\frac{{{S_{n+1}}}}{n+1}-\frac{S_n}{n}=\frac{1}{2}$.
∴數(shù)列$\left\{{\frac{S_n}{n}}\right\}$是首項為$\frac{S_1}{1}=1$,公差為$\frac{1}{2}$的等差數(shù)列.
∴$\frac{S_n}{n}=1+\frac{1}{2}({n-1})=\frac{1}{2}({n+1})$.
∴${S_n}=\frac{{n({n+1})}}{2}$.
當(dāng)n≥2時,an=Sn-Sn-1…(5分)=$\frac{{n({n+1})}}{2}-\frac{{({n-1})n}}{2}$=n.
而a1=1適合上式,
∴an=n.
解法2:由$n{S_{n+1}}-({n+1}){S_n}=\frac{{n({n+1})}}{2}$,得$n({{S_{n+1}}-{S_n}})-{S_n}=\frac{{n({n+1})}}{2}$,
∴$n{a_{n+1}}-{S_n}=\frac{{n({n+1})}}{2}$.、
當(dāng)n≥2時,$({n-1}){a_n}-{S_{n-1}}=\frac{{n({n-1})}}{2}$,②
①-②得$n{a_{n+1}}-({n-1}){a_n}-({{S_n}-{S_{n-1}}})=\frac{{n({n+1})}}{2}-\frac{{n({n-1})}}{2}$,
∴nan+1-nan=n.
∴an+1-an=1.
∴數(shù)列{an}從第2項開始是以a2=2為首項,公差為1的等差數(shù)列.
∴an=2+(n-2)=n.
而a1=1適合上式,
∴an=n.
(3)由(2)知an=n,${S_n}=\frac{{n({n+1})}}{2}$.
假設(shè)存在正整數(shù)k,使ak,S2k,a4k成等比數(shù)列,
則$S_{2k}^2={a_k}•{a_{4k}}$.
即${[{\frac{{2k({2k+1})}}{2}}]^2}=k•4k$.
∵k為正整數(shù),
∴(2k+1)2=4.
得2k+1=2或2k+1=-2,
解得$k=\frac{1}{2}$或$k=-\frac{3}{2}$,與k為正整數(shù)矛盾.
∴不存在正整數(shù)k,使ak,S2k,a4k成等比數(shù)列.
點評 本小題主要考查等差數(shù)列、等比數(shù)列的通項公式、前n項和公式、遞推式的應(yīng)用等知識,考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,以及運算求解能力和創(chuàng)新意識,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 8 | B. | 4 | C. | $\frac{{8\sqrt{3}}}{3}$ | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -5 | B. | 5 | C. | -$\frac{3}{2}$ | D. | $\frac{3}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1:2 | B. | 2:27 | C. | 1:3 | D. | 4:27 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | A62×A54種 | B. | A62×54種 | C. | C62×A54種 | D. | C62×54 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
分組 | 頻數(shù) | 頻率 |
[10,15) | 10 | 0.25 |
[15,20) | 24 | n |
[20,25) | 4 | P |
[25,30) | 2 | 0.05 |
合計 | 40 | 1 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com