8.在斜三角形ABC中,“A>$\frac{π}{4}$”是“tanA>1”的( 。
A.充分不必要條件B.必要不充分條件
C.充分必要條件D.既不充分也不必要條件

分析 要判斷“A>$\frac{π}{4}$”是“tanA>1”的什么條件,只要判斷,其中一個成立時,另一個是否也成立即可,我們可以利用舉反例進行判斷;

解答 解:當(dāng)A=$\frac{2π}{3}$時,tanA=-$\sqrt{3}$,所以△ABC中,“A>$\frac{π}{4}$”推不出“tanA>1”;
在斜三角形ABC中,當(dāng)tanA>1,可得A>$\frac{π}{4}$,滿足tanA>1,推出A>$\frac{π}{4}$,
∴“A>$\frac{π}{4}$”是“tanA>1”的必要不充分條件,
故選:B.

點評 本題考查了充要條件的判斷,做題時一定要細心,此題利用特殊值法進行判斷會比較簡單,是一道基礎(chǔ)題;

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知橢圓C1:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)左右兩個焦點分別為F1,F(xiàn)2,R(1,$\frac{3}{2}$)為橢圓C1上一點,過F2且與x軸垂直的直線與橢圓C1相交所得弦長為3.拋物線C2的頂點是橢圓C1的中心,焦點與橢圓C1的右焦點重合.
(Ⅰ)求橢圓C1和拋物線C2的方程;
(Ⅱ)過拋物線C2上一點P(異于原點O)作拋物線切線l交橢圓C1于A,B兩點,求△AOB面積的最大值;
(Ⅲ)過橢圓C1右焦點F2的直線l1與橢圓相交于C,D兩點,過R且平行于CD的直線交橢圓于另一點Q,問是否存在直線l1,使得四邊形RQDC的對角線互相平分?若存在,求出l1的方程;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.雙曲線x2-$\frac{{y}^{2}}{9}$=1的焦點到漸近線的距離為3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知F1、F2為雙曲線x2-$\frac{{y}^{2}}{4}$=1的左右焦點,點P為雙曲線上一點且滿足PF1⊥x軸,則|PF2|為(  )
A.6B.2C.4D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知函數(shù)f(x)=1-2sin(x+$\frac{π}{8}$)[sin(x+$\frac{π}{8}$)-cos(x+$\frac{π}{8}$)],x∈R.
(Ⅰ)求函數(shù)f(x)的最小正周期;
(Ⅱ)求函數(shù)f(x+$\frac{π}{8}$)在區(qū)間[-$\frac{π}{2}$,0]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}$-y2=1(a>0)的右焦點為F,過點F作一條漸近線的垂線,垂足為P.若點P的縱坐標(biāo)為$\frac{2\sqrt{5}}{5}$,則該雙曲線的離心率是$\frac{\sqrt{5}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知函數(shù)D(x)=$\left\{\begin{array}{l}1\\ 0\end{array}\right.\begin{array}{l}{\;}&{x為有理數(shù)}\\{\;}&{x為無理數(shù)}\end{array}$,則(  )
A.D(D(x))=1,0是D(x)的一個周期B.D(D(x))=1,1是D(x)的一個周期
C.D(D(x))=0,1是D(x)的一個周期D.D(D(x))=0,D(x)的最小正周期不存在

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知圓C1:x2+y2+6x=0關(guān)于直線l1:y=2x+1對稱的圓為C,則圓C的方程為( 。
A.(x+1)2+(y+2)2=9B.(x+1)2+(y-2)2=9C.(x-1)2+(y-2)2=9D.(x-1)2+(y+2)2=9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知a,b,m為非零實數(shù),且a2+b2+2-m=0,$\frac{1}{{a}^{2}}$+$\frac{4}{^{2}}$+1-2m=0
(1)求證:$\frac{1}{{a}^{2}}$+$\frac{4}{^{2}}$≥$\frac{9}{{a}^{2}+^{2}}$;
(2)求證:m≥$\frac{7}{2}$.

查看答案和解析>>

同步練習(xí)冊答案