設(shè)直線l經(jīng)過點(diǎn)(0,-2),且與圓x2+y2=1相切,則l的斜率是(  )
A、±1
B、±
1
2
C、±
3
3
D、±
3
考點(diǎn):圓的切線方程
專題:計(jì)算題,直線與圓
分析:可設(shè)直線方程為y=kx-2,由直線與圓x2+y2=1相切可得,圓心(0,0)到直線的距離等于半徑可求k.
解答: 解:設(shè)直線方程為y=kx-2,即kx-y-2=0
由直線與圓x2+y2=1相切可得,圓心(0,0)到直線的距離等于半徑,即
2
k2+1
=1
∴k=±
3

故選:D
點(diǎn)評(píng):本題主要考查了直線與圓相切的性質(zhì):圓心到直線的距離等于半徑的應(yīng)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
x2+4x+5
x2+4x+4
,則f(-π)與f(-
2
2
)的大小是( 。
A、f(-π)>f(-
2
2
B、f(-π)<f(-
2
2
C、f(-π)=f(-
2
2
D、不能確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn,若
S4
S2
=3,則
S6
S4
的值是( 。
A、2B、3C、4D、5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=f(x)是定義在R上的偶函數(shù),當(dāng)x>0時(shí),f(x)=lnx,那么函數(shù)y=f(x)的零點(diǎn)個(gè)數(shù)為(  )
A、一定是2
B、一定是3
C、可能是2也可能是3
D、可能是0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
-x2+
1
2
x,x<0
ln(x+1),x≥0
,若函數(shù)y=f(x)-kx有三個(gè)零點(diǎn),則實(shí)數(shù)k的取值范圍( 。
A、(0,1)
B、(
1
2
,2)
C、(-1,1)
D、(
1
2
,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓的圓心是(-3,4),半徑長是
5
,則圓的標(biāo)準(zhǔn)方程為( 。
A、(x+3)2+(y-4)2=5
B、(x-3)2+(y-4)2=5
C、(x+3)2+(y-4)2=25
D、(x+3)2+(y+4)2=25

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=log
1
2
(2x-x2)的單調(diào)遞增區(qū)間為( 。
A、[1,+∞)
B、(-∞,1]
C、[1,2)
D、(0,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

正數(shù)x,y滿足
1
x
+
9
y
=1.
(1)求xy的最小值.
(2)求x+y的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直角梯形ABCD中,AD∥BC,∠ADC=90°,AD=4,DC=6,BC=2.
(1)若P是腰DC的中點(diǎn),求|
PA
+3
PB
|的值;
(2)在腰DC上是否存在點(diǎn)P,使∠APB=90°.若存在,求出點(diǎn)P的位置;若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案