12.已知$f(x)=\left\{\begin{array}{l}a-{x^2}-2x,x≤0\\{e^{|x-1|}},x>0\end{array}\right.$,且函數(shù)y=f(x)-1恰有3個(gè)不同的零點(diǎn),則實(shí)數(shù)a的取值范圍是( 。
A.(-1,+∞)B.(-2,0)C.(-2,+∞)D.(0,1]

分析 函數(shù)的零點(diǎn)的問(wèn)題也是函數(shù)的圖象的交點(diǎn)問(wèn)題,分別畫(huà)出函數(shù)的圖象,由圖象可知a的范圍.

解答 解:∵函數(shù)數(shù)y=f(x)-1恰有3個(gè)不同的零點(diǎn),
∴f(x)=1有三個(gè)解,
即y=f(x)與y=1有三個(gè)交點(diǎn),分別畫(huà)出函數(shù)y=f(x)與y=1的圖象,
當(dāng)x≥0時(shí),f(x)=e|x-1|與y=1只有一個(gè)交點(diǎn),
當(dāng)x≤0時(shí),f(x)=a-x2-2x=-(x+1)2+a+1.
結(jié)合圖象可得只需滿(mǎn)足:$\left\{\begin{array}{l}a+1>1\\ a≤1\end{array}\right.$,解得0<a≤1,
由圖象可知a的范圍為(0,1],
故選:D.

點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是根的存在性及根的個(gè)數(shù)判斷,其中熟練掌握函數(shù)零點(diǎn)與方程根之間的對(duì)應(yīng)關(guān)系是解答的關(guān)鍵

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.函數(shù)y=log2(x+$\sqrt{{x}^{2}+1}$)是奇函數(shù).(填“奇”或“偶”)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.已知a=($\frac{1}{2}$)${\;}^{\frac{1}{3}}}$,b=($\frac{1}{3}$)${\;}^{-\frac{1}{2}}}$,c=log2$\frac{1}{3}$,則a,b,c的大小關(guān)系是( 。
A.c<a<bB.c<b<aC.a<b<cD.b<a<c

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.如圖是王老師鍛煉時(shí)所走的離家距離(S)與行走時(shí)間(t)之間的函數(shù)關(guān)系圖,若用黑點(diǎn)表示王老師家的位置,則王老師行走的路線(xiàn)可能是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.某同學(xué)用“五點(diǎn)法”畫(huà)函數(shù)f(x)=Asin(ωx+φ)+B(A>0,ω>0,|φ|<$\frac{π}{2}$)在某一個(gè)周期內(nèi)的圖象時(shí),列表并填入的部分?jǐn)?shù)據(jù)如下表:
xx1$\frac{π}{12}$x2$\frac{7π}{12}$x3
ωx+φ0$\frac{π}{2}$π$\frac{3π}{2}$
Asin(ωx+φ)+B141-21
(Ⅰ)求x2的值及函數(shù)f(x)的解析式;
(Ⅱ)請(qǐng)說(shuō)明把函數(shù)g(x)=sinx的圖象上所有的點(diǎn)經(jīng)過(guò)怎樣的變換可以得到函數(shù)f(x)的圖象.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.已知集合A={0,1,2},B={2,3},則集合A∪B=( 。
A.{1,2,3}B.{0,1,2,3}C.{2}D.{0,1,3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.已知角θ的終邊經(jīng)過(guò)點(diǎn)P(2x,-6),且tanθ=-$\frac{3}{4}$,則x的值為3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.下列命題中正確的個(gè)數(shù)是(  )
①命題“?x∈(1,+∞),2x>2”的否定是“?x∉(1,+∞),2x≤2”
②“a=2”是“|a|=2”的必要不充分條件;
③若命題p為真,命題?q為真,則命題p∧q為真;
④命題“在△ABC中,若$sinA<\frac{1}{2}$,則$A<\frac{π}{6}$”的逆否命題為真命題.
A.0個(gè)B.1個(gè)C.2個(gè)D.3個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.命題“?x∈R,3x>2x”的否定是(  )
A.?x∈R,3x≤2xB.?x∉R,3x<2xC.?x0∈R,3x0≤2x0D.?x0∉R,3x0<2x0

查看答案和解析>>

同步練習(xí)冊(cè)答案