分析 求導函數,由導數的正負,可得函數的單調區(qū)間,從而可求函數的極值.
解答 解:f′(x)=(1-x)e-x,
令f′(x)=0,解得x=1----------------(4分)
當x變化時,f′(x),f(x)的變化情況如下表:
x | (-∞,1) | 1 | (1,+∞) |
f′(x) | + | 0 | - |
f(x) | 遞增 | $\frac{1}{e}$ | 遞減 |
點評 本題考查導數的幾何意義,考查函數的單調性與極值,屬于基礎題.
科目:高中數學 來源: 題型:填空題
x | 2.50 | 1.01 | 1.90 | 1.22 | 2.52 | 2.17 | 1.89 | 1.96 | 1.36 | 2.22 |
y | 0.84 | 0.25 | 0.98 | 0.15 | 0.01 | 0.60 | 0.59 | 0.88 | 0.84 | 0.10 |
lnx | 0.90 | 0.01 | 0.64 | 0.20 | 0.92 | 0.77 | 0.64 | 0.67 | 0.31 | 0.80 |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $(0,±\sqrt{m-n})$ | B. | $(±\sqrt{m-n},0)$ | C. | $(0,±\sqrt{n-m})$ | D. | $(±\sqrt{n-m},0)$ |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | -38 | B. | -30 | C. | -6 | D. | -12 |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com