【題目】在平面直角坐標系中,當(dāng)P(x,y)不是原點時,定義P的“伴隨點”為;
當(dāng)P是原點時,定義P的“伴隨點“為它自身,平面曲線C上所有點的“伴隨點”所構(gòu)成的曲線定義為曲線C的“伴隨曲線”.現(xiàn)有下列命題:
①若點A的“伴隨點”是點,則點的“伴隨點”是點A
②單位圓的“伴隨曲線”是它自身;
③若曲線C關(guān)于x軸對稱,則其“伴隨曲線”關(guān)于y軸對稱;
④一條直線的“伴隨曲線”是一條直線.
其中的真命題是_____________(寫出所有真命題的序列).
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某企業(yè)參加項目生產(chǎn)的工人為人,平均每人每年創(chuàng)造利潤萬元.根據(jù)現(xiàn)實的需要,從項目中調(diào)出人參與項目的售后服務(wù)工作,每人每年可以創(chuàng)造利潤萬元(),項目余下的工人每人每年創(chuàng)造利圖需要提高
(1)若要保證項目余下的工人創(chuàng)造的年總利潤不低于原來名工人創(chuàng)造的年總利潤,則最多調(diào)出多少人參加項目從事售后服務(wù)工作?
(2)在(1)的條件下,當(dāng)從項目調(diào)出的人數(shù)不能超過總?cè)藬?shù)的時,才能使得項目中留崗工人創(chuàng)造的年總利潤始終不低于調(diào)出的工人所創(chuàng)造的年總利潤,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直三棱柱中,底面△是等腰直角三角形,,為側(cè)棱的中點.
(1)求證:平面;
(2)求異面直線與所成角的大。ńY(jié)果用反三角函數(shù)值表示).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列,為其前n項的和,滿足.
(1)求數(shù)列的通項公式;
(2)設(shè)數(shù)列的前n項和為,數(shù)列的前n項和為,求證:當(dāng)時;
(3)若函數(shù)的定義域為R,并且,求證.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C:.
(1)求橢圓C的離心率;
(2)設(shè)分別為橢圓C的左右頂點,點P在橢圓C上,直線AP,BP分別與直線相交于點M,N.當(dāng)點P運動時,以M,N為直徑的圓是否經(jīng)過軸上的定點?試證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)調(diào)查了某班全部名同學(xué)參加學(xué)校社團的情況,數(shù)據(jù)如下表:(單位:人)
參加書法社 | 未參加書法社 | |
參加辯論社 | ||
未參加辯論社 |
(1)從該班隨機選名同學(xué),求該同學(xué)至少參加一個社團的概率;
(2)在既參加書法社又參加辯論社的名同學(xué)中,有名男同學(xué),名女同學(xué).現(xiàn)從這名同學(xué)中男女姓各隨機選人(每人被選到的可能性相同).
(i)列舉出所有可能結(jié)果;
(ii)設(shè)為事件“被選中且未被選中”,求事件發(fā)生的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某市2013年發(fā)放汽車牌照12萬張,其中燃油型汽車牌照10萬張,電動型汽車2萬張,為了節(jié)能減排和控制總量,從2013年開始,每年電動型汽車牌照按50%增長,而燃油型汽車牌照每一年比上一年減少0.5萬張,同時規(guī)定一旦某年發(fā)放的牌照超過15萬張,以后每一年發(fā)放的電動車的牌照的數(shù)量維持在這一年的水平不變.
(1)記2013年為第一年,每年發(fā)放的燃油型汽車牌照數(shù)量構(gòu)成數(shù)列,每年發(fā)放電動型汽車牌照數(shù)為構(gòu)成數(shù)列,完成下列表格,并寫出這兩個數(shù)列的通項公式;
(2)從2013年算起,累計各年發(fā)放的牌照數(shù),哪一年開始超過200萬張?
. |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖已知橢圓,是長軸的一個端點,弦過橢圓的中心,且,.
(Ⅰ)求橢圓的方程:
(Ⅱ)設(shè)為橢圓上異于且不重合的兩點,且的平分線總是垂直于軸,是否存在實數(shù),使得,若存在,請求出的最大值,若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),.
(1)當(dāng)時,求曲線在點處的切線方程;
(2)討論的單調(diào)性;
(3)若有兩個零點,求的取值范圍(只需直接寫出結(jié)果).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com