函數(shù)f(x)=
1
1-x
+lg(1-x)的定義域是(  )
A、(-1,1)∪(1,+∞)
B、(1,+∞)
C、(-∞,1)
D、(-∞,+∞)
考點(diǎn):函數(shù)的定義域及其求法
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:由分式的分母不等于0,對(duì)數(shù)式的真數(shù)大于0聯(lián)立不等式組求解x的取值集合得答案.
解答: 解:由
1-x≠0
1-x>0
,得x<1.
∴函數(shù)f(x)=
1
1-x
+lg(1-x)的定義域是(-∞,1).
故選:C.
點(diǎn)評(píng):本題考查了函數(shù)的定義域及其求法,是基礎(chǔ)的會(huì)考題型.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知平面向量
a
=(λ,-3),
b
=(4,-2),若
a
b
,則實(shí)數(shù)λ=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
1
3
x3+2x2+ax+b,g(x)=ex(cx+d),且函數(shù)f(x)的導(dǎo)函數(shù)為f′(x),若曲線f(x)和g(x)都過點(diǎn)A(0,2),且在點(diǎn)A 處有相同的切線y=4x+2.
(Ⅰ)求a,b,c,d的值;
(Ⅱ)若x≥-2時(shí),mg(x)≥f′(x)-2恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

?x∈[-1,1]使關(guān)于x的不等式x2-2m-5>0能成立,則m取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)(x∈R)滿足f(x+π)=f(x)+sinx,當(dāng)0≤x<π時(shí),f(x)=0,則f(
23π
6
)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義在R上的函數(shù)f(x),若對(duì)任意x1≠x2,都有x1f(x1)+x2f(x2)>x1f(x2)+x2f(x1),則稱f(x)為“Z函數(shù)”,給出下列函數(shù):
①y=
1
3
x3-x2+x-2;②y=2x-(sinx+cosx);③y=ex+1;④f(x)=
ln|x|, x≠0
0, x=0.
其中是“Z函數(shù)”的個(gè)數(shù)為( 。
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=(sinx-cosx)sinx,x∈R,則f(x)的對(duì)稱軸是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若tan(α+β)=
3
5
,tan(β-
π
4
)=
1
4
,則tan(α+
π
4
)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

化簡:
tan(π+α)cos(2π+α)sin(α-
2
)
cos(-α-3π)sin(-3π-α)
=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案