5.國內(nèi)某大學有男生6000人,女生4000人,該校想了解本校學生的運動狀況,根據(jù)性別采取分層抽樣的方法從全校學生中抽取100人,調(diào)查他們平均每天運動的時間(單位:小時),統(tǒng)計表明該校學生平均每天運動的時間范圍是[0,3].若規(guī)定平均每天運動的時間不少于2小時的學生為“運動達人”,低于2小時的學生為“非運動達人”.根據(jù)調(diào)查的數(shù)據(jù)按性別與“是否為‘運動達人’”進行統(tǒng)計,得到如下2×2列聯(lián)表.
運動時間
性別
運動達人非運動達人合計
男生36
女生26
合計100
(Ⅰ)請根據(jù)題目信息,將2×2列聯(lián)表中的數(shù)據(jù)補充完整,并通過計算判斷能否在犯錯誤概率不超過0.025的前提下認為性別與“是否為‘運動達人’”有關;
(Ⅱ)將此樣本的頻率估計為總體的概率,隨機調(diào)查該校的3名男生,設調(diào)查的3人中運動達人的人數(shù)為隨機變量X,求X的分布列和數(shù)學期望E(X)及方差D(X).
附表及公式:
 P(K2≥k0 0.150.10 0.05 0.025 0.010 
 k0 2.0722.706 3.841  5.0246.635
K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.

分析 (I)計算K2,根據(jù)臨界值表作出結(jié)論;
(II)分別計算X=0,1,2,3時的概率得出分布列,根據(jù)分布列得出數(shù)學期望和方差.

解答 解:(I)列聯(lián)表如下:

運動時間
性別
運動達人非運動達人合計
男生362460
女生142640
合計5050100
K2=$\frac{100×({36×26-14×24)}^{2}}{60×40×50×50}$=6>5.024.
∴在犯錯誤概率不超過0.025的前提下可以性別與“是否為‘運動達人’”有關.
(II)隨機調(diào)查一名男生,則這名男生為運動達人的概率為P=$\frac{36}{60}=\frac{3}{5}$.
X的可能取值為0,1,2,3.
∴P(X=0)=(1-$\frac{3}{5}$)3=$\frac{8}{125}$,P(X=1)=C${\;}_{3}^{1}$($\frac{3}{5}$)(1-$\frac{3}{5}$)2=$\frac{36}{125}$,P(X=2)=C${\;}_{3}^{2}$($\frac{3}{5}$)2(1-$\frac{3}{5}$)=$\frac{54}{125}$,P(X=3)=($\frac{3}{5}$)3=$\frac{27}{125}$.
∴X的分布列為:
 X0123
P$\frac{8}{125}$$\frac{36}{125}$$\frac{54}{125}$$\frac{27}{125}$
∴E(X)=3×$\frac{3}{5}$=$\frac{9}{5}$.D(X)=3×$\frac{3}{5}×\frac{2}{5}$=$\frac{18}{25}$.

點評 本題考查了獨立性檢驗的應用,離散型隨機變量的分布列、數(shù)學期望、方差的求法,是中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

15.設a、b是關于t的方程t2cosθ-tsinθ=0的兩個不相等實根,則過A(a,a2)、B(b,b2)兩點的直線與雙曲線$\frac{x^2}{{{{cos}^2}θ}}$-$\frac{y^2}{{{{sin}^2}θ}}$=1的公共點個數(shù)是( 。
A.3B.2C.1D.0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.關于x的方程x3-px+2=0有三個不同實數(shù)解,則實數(shù)p的取值范圍為(3,+∞).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.設復數(shù)z=(x-1)+(y-$\sqrt{3}$)i,(x,y∈R),若|z|≤2,則y≤$\frac{{\sqrt{3}}}{3}$x的概率為(  )
A.$\frac{1}{3}-\frac{3}{4π}$B.$\frac{1}{3}+\frac{{\sqrt{3}}}{4π}$C.$\frac{1}{2}-\frac{{\sqrt{3}}}{4π}$D.$\frac{1}{3}-\frac{{\sqrt{3}}}{4π}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.某空間幾何體的三視圖如圖所示,則該幾何體的體積是( 。
A.$\frac{2}{3}$B.$\frac{4}{3}$C.$\frac{3}{2}$D.$\frac{5}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.已知函數(shù)f(x)=$\left\{\begin{array}{l}{\frac{k}{x-1},x≤0}\\{lnx,x>0}\end{array}\right.$,若關于x的方程f(f(x))=0有且只有一個實數(shù)解,則實數(shù)k的取值范圍是( 。
A.(-1,0)∪(0,+∞)B.(-∞,0)∪(0,1)C.(-1,0)∪(0,1)D.(-∞,-1)∪(1,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.有4個不同的球,4個不同的盒子,把球全部放入盒子內(nèi).
(1)若恰有1個盒子不放球,求不同放法的種數(shù);
(2)若恰有2個盒子不放球,求不同放法的種數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.在四棱錐P-ABCD中,底面ABCD是矩形,DA⊥平面ABP,E是棱AB的中點,F(xiàn)在棱BC上,且AP=BP=$\sqrt{2}$,AB=2,AD=3,BF=2.
(Ⅰ)求證:DF⊥平面EFP;
(Ⅱ)求三棱錐E-DFP的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.如圖,將菱形AECF沿對角線EF折疊,分別過E、F作AC所在平面的垂線ED、FB,垂足分別為D、B,四邊形ABCD為菱形,且∠BAD=60°.
(1)求證:FC∥平面ADE;
(2)若AB=2BF=2,求該幾何體的體積.

查看答案和解析>>

同步練習冊答案