6.已知雙曲線C以F1(-2,0)、F2(2,0)為焦點,且過點P(7,12).
(1)求雙曲線C與其漸近線的方程;
(2)若斜率為1的直線l與雙曲線C相交于A,B兩點,且$\overrightarrow{OA}⊥\overrightarrow{OB}$(O為坐標原點).求直線l的方程.

分析 (1)設(shè)出雙曲線C方程,利用已知條件求出c,a,解得b,即可求出雙曲線方程與漸近線的方程;
(2)設(shè)直線l的方程為y=x+t,將其代入方程${x^2}-\frac{y^2}{3}=1$,通過△>0,求出t的范圍,設(shè)A(x1,y1),B(x2,y2),利用韋達定理,通過x1x2+y1y2=0,求解t即可得到直線方程.

解答 解:(1)設(shè)雙曲線C的方程為$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$,半焦距為c,
則c=2,$2a=||P{F_1}|-|P{F_2}||=|\sqrt{{9^2}+{{12}^2}}-\sqrt{{5^2}+{{12}^2}}|=2$,a=1,…(2分)
所以b2=c2-a2=3,
故雙曲線C的方程為${x^2}-\frac{y^2}{3}=1$.            …(4分)
雙曲線C的漸近線方程為$y=±\sqrt{3}x$.           …(6分)
(2)設(shè)直線l的方程為y=x+t,將其代入方程${x^2}-\frac{y^2}{3}=1$,
可得2x2-2tx-t2-3=0(*)                  …(8分)
△=4t2+8(t2+3)=12t2+24>0,若設(shè)A(x1,y1),B(x2,y2),
則x1,x2是方程(*)的兩個根,所以${x_1}+{x_2}=t,{x_1}{x_2}=-\frac{{{t^2}+3}}{2}$,
又由$\overrightarrow{OA}⊥\overrightarrow{OB}$,可知x1x2+y1y2=0,…(11分)
即x1x2+(x1+t)(x2+t)=0,可得$2{x_1}{x_2}+t({x_1}+{x_2})+{t^2}=0$,
故-(t2+3)+t2+t2=0,解得$t=±\sqrt{3}$,
所以直線l方程為$y=x±\sqrt{3}$.               …(14分)

點評 本題考查雙曲線的方程的求法,雙曲線的簡單性質(zhì)的應用,直線與雙曲線的位置關(guān)系的綜合應用,考查計算能力.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

16.(1)已知雙曲線的一條漸近線方程是y=-$\frac{3}{2}$x,焦距為2$\sqrt{13}$,求此雙曲線的標準方程;
(2)求以雙曲線$\frac{{y}^{2}}{16}$-$\frac{{x}^{2}}{9}$=1的焦點為頂點,頂點為焦點的橢圓標準方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.若tanα,tanβ是方程x2-3$\sqrt{3}$x+4=0的兩個根,且$α,β∈(0,\frac{π}{2})$,則α+β=$\frac{2π}{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.已知圓C過點A(1,4),B(3,2),且圓心C在直線x+y-3=0上.
(1)求圓C的方程;
(2)若點P(x,y)是圓C上的動點,z=x+y,求z的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.已知f(x)=$\frac{1}{x}$•cosx,則f(π)+f′($\frac{π}{2}$)=( 。
A.0B.$\frac{3}{π}$C.$\frac{2}{π}$D.-$\frac{3}{π}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.設(shè)隨機變量ξ~N(3,4),若P(ξ<2a-3)=P(ξ>a+2),則實數(shù)a等于( 。
A.$\frac{7}{3}$B.$\frac{5}{3}$C.5D.3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

18.歷年氣象統(tǒng)計表明:某地區(qū)一天下雨的概率是$\frac{1}{3}$,連續(xù)兩天下雨的概率是$\frac{1}{5}$.已知該地區(qū)某天下雨,則隨后一天也下雨的概率是$\frac{3}{5}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.某同學在研究相鄰三個整數(shù)的算術(shù)平方根之間的關(guān)系時,發(fā)現(xiàn)以下三個式子均是正確的:①$\sqrt{1}$+$\sqrt{3}$<2$\sqrt{2}$;②$\sqrt{2}$+$\sqrt{4}$<2$\sqrt{3}$;③$\sqrt{3}$+$\sqrt{5}$<2$\sqrt{4}$
(1)已知$\sqrt{2}∈(1.41$,1.42),$\sqrt{3}∈(1.73$,1.74),$\sqrt{5}∈(2.23$,2.24),請從以上三個式子中任選一個,結(jié)合此范圍,驗證其正確性(注意不能近似計算);
(2)請將此規(guī)律推廣至一般情形,并證明之.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.已知函數(shù)a,b,則“|a+b|+|a-b|≤1”是“a2+b2≤1“的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

同步練習冊答案