分析 (1)利用兩個(gè)向量垂直的性質(zhì),兩個(gè)向量的數(shù)量積公式,可得$\overrightarrow{p}$•$\overrightarrow{q}$=0.再整理可得:cos2A=$\frac{1}{4}$,由cosA>0,解得:cosA=$\frac{1}{2}$,即可解得A的值.
(2)由正弦定理可得:a2+c2-ac=b2,由余弦定理可得cosB,解得B=C=$\frac{π}{3}$,結(jié)合AC=2,利用三角形面積公式即可得解.
解答 解:(1)∵$\overrightarrow{p}$⊥$\overrightarrow{q}$,
∴$\overrightarrow{p}$•$\overrightarrow{q}$=0,
∴(cosA+sinA)(cosA-sinA)+(2+2sinA)(1-sinA)=0,整理可得:cos2A=$\frac{1}{4}$,
∵△ABC為銳角三角形,cosA>0,解得:cosA=$\frac{1}{2}$,可得:A=$\frac{π}{3}$.
(2)∵sin2A+cos2B+sin2C-sinAsinC=1,
∴sin2A+sin2C-sinAsinC=1-cos2B=sin2B,由正弦定理可得:a2+c2-ac=b2,
∴由余弦定理可得:cosB=$\frac{{a}^{2}+{c}^{2}-^{2}}{2ac}$=$\frac{ac}{2ac}=\frac{1}{2}$,故解得B=C=$\frac{π}{3}$,
∴AC=2,
∴S△ABC=$\frac{1}{2}$ACsin$\frac{π}{3}$×BC=$\frac{1}{2}×2×\frac{\sqrt{3}}{2}×2$=$\sqrt{3}$.
點(diǎn)評 本題主要考查了正弦定理,余弦定理,三角形面積公式的應(yīng)用,考查了兩個(gè)向量垂直的性質(zhì),兩個(gè)向量的數(shù)量積公式的應(yīng)用,屬于基本知識(shí)的考查.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{\sqrt{3}}{3}$ | B. | $-\frac{\sqrt{3}}{3}$ | C. | $\sqrt{3}$ | D. | 1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [1,2] | B. | (0,$\frac{1}{2}$] | C. | [$\frac{1}{2}$,2] | D. | (0,2] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | C${\;}_{6}^{3}$($\frac{1}{2}$)6 | B. | A${\;}_{4}^{2}$($\frac{1}{2}$)6 | C. | C${\;}_{4}^{2}$($\frac{1}{2}$)6 | D. | C${\;}_{4}^{1}$($\frac{1}{2}$)6 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com