4.已知△ABC為銳角三角形,且三個(gè)內(nèi)角為A,B,C,$\overrightarrow{p}$=(cosA+sinA,2+2sinA),$\overrightarrow{q}$=(cosA-sinA,1-sinA),且$\overrightarrow{p}$⊥$\overrightarrow{q}$
(1)求A;
(2)設(shè)AC=2,sin2A+cos2B+sin2C-sinAsinC=1,求△ABC的面積.

分析 (1)利用兩個(gè)向量垂直的性質(zhì),兩個(gè)向量的數(shù)量積公式,可得$\overrightarrow{p}$•$\overrightarrow{q}$=0.再整理可得:cos2A=$\frac{1}{4}$,由cosA>0,解得:cosA=$\frac{1}{2}$,即可解得A的值.
(2)由正弦定理可得:a2+c2-ac=b2,由余弦定理可得cosB,解得B=C=$\frac{π}{3}$,結(jié)合AC=2,利用三角形面積公式即可得解.

解答 解:(1)∵$\overrightarrow{p}$⊥$\overrightarrow{q}$,
∴$\overrightarrow{p}$•$\overrightarrow{q}$=0,
∴(cosA+sinA)(cosA-sinA)+(2+2sinA)(1-sinA)=0,整理可得:cos2A=$\frac{1}{4}$,
∵△ABC為銳角三角形,cosA>0,解得:cosA=$\frac{1}{2}$,可得:A=$\frac{π}{3}$.
(2)∵sin2A+cos2B+sin2C-sinAsinC=1,
∴sin2A+sin2C-sinAsinC=1-cos2B=sin2B,由正弦定理可得:a2+c2-ac=b2,
∴由余弦定理可得:cosB=$\frac{{a}^{2}+{c}^{2}-^{2}}{2ac}$=$\frac{ac}{2ac}=\frac{1}{2}$,故解得B=C=$\frac{π}{3}$,
∴AC=2,
∴S△ABC=$\frac{1}{2}$ACsin$\frac{π}{3}$×BC=$\frac{1}{2}×2×\frac{\sqrt{3}}{2}×2$=$\sqrt{3}$.

點(diǎn)評 本題主要考查了正弦定理,余弦定理,三角形面積公式的應(yīng)用,考查了兩個(gè)向量垂直的性質(zhì),兩個(gè)向量的數(shù)量積公式的應(yīng)用,屬于基本知識(shí)的考查.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.若一系列函數(shù)的解析式和值域相同,但其定義域不同,則稱這些函數(shù)為“同族函數(shù)”,例如函數(shù)y=x2,x∈[1,2]與函數(shù)y=x2,x∈[-2,-1]即為“同族函數(shù)”.請你找出下面哪些函數(shù)解析式也能夠被用來構(gòu)造“同族函數(shù)”,答:①③⑤(請?zhí)顚懶蛱?hào))
①y=|x-2|;  ②y=x;  ③y=log${\;}_{\frac{1}{2}}$(1-x2);  ④y=5x;   ⑤y=$\frac{{2}^{-x}+{2}^{x}}{{x}^{2}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知過原點(diǎn)的直線l與曲線C:$\frac{{x}^{2}}{3}$+y2=1相交,直線l被曲線C所截得的線段長等于$\sqrt{6}$,則直線l的斜率k的-個(gè)取值是 ( 。
A.$\frac{\sqrt{3}}{3}$B.$-\frac{\sqrt{3}}{3}$C.$\sqrt{3}$D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知函數(shù)f(x+$\frac{1}{2}$)為奇函數(shù),設(shè)g(x)=f(x)+1,則g($\frac{1}{2015}$)+g($\frac{2}{2015}$)+g($\frac{3}{2015}$)+…+g($\frac{2014}{2015}$)=2014.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知函數(shù)f(x)是定義在R上的偶函數(shù),且x1,x2∈[0,+∞)時(shí),有$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$>0,若實(shí)數(shù)a滿足f(log2a)+f(log${\;}_{\frac{1}{2}}$a)≤2f(1),則a的取值范圍( 。
A.[1,2]B.(0,$\frac{1}{2}$]C.[$\frac{1}{2}$,2]D.(0,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.如圖.在四棱錐P-ABCD中,∠PAD=90°,PA⊥CD.點(diǎn)M是棱PD的中點(diǎn).
(1)證明:平面PAB⊥平面ABCD;
(2)若底面ABCD是邊長為2的正方形,PA=2,求異面直線AP與BM所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.定義對于任意兩個(gè)集合M、N的運(yùn)算:M?N={x|x∈M,x∈N,x∉M∩N}.設(shè)集合A={x|x2-3x+2=0},B={y|y=x2-2x+3,x∈A},則A?B={1,3}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知角$(α+\frac{π}{3})$的終邊經(jīng)過點(diǎn)$P(2,\;4\sqrt{3})$,則tanα=$\frac{{\sqrt{3}}}{7}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.某人射擊一次命中目標(biāo)的概率為$\frac{1}{2}$,則此人射擊6次,3次命中且恰有2次連續(xù)命中的概率為( 。
A.C${\;}_{6}^{3}$($\frac{1}{2}$)6B.A${\;}_{4}^{2}$($\frac{1}{2}$)6C.C${\;}_{4}^{2}$($\frac{1}{2}$)6D.C${\;}_{4}^{1}$($\frac{1}{2}$)6

查看答案和解析>>

同步練習(xí)冊答案