1.△ABC中,角A、B、C的對邊分別為a、b、c.已知(a+c)2-b2=3ac
(1)求角B;
(2)當(dāng)b=6,sinC=2sinA時(shí),求△ABC的面積.

分析 (1)由余弦定理變形已知式子可得cosB的值,可得B值;
(2)由題意和正弦定理可得c=2a,代入b2=a2-ac+c2可得a和c的值,可得三角形為直角三角形,由面積公式可得.

解答 解:(1)∵(a+c)2-b2=3ac,∴b2=a2-ac+c2,
∴ac=a2+c2-b2,∴$cosB=\frac{{{a^2}+{c^2}-{b^2}}}{2ac}=\frac{ac}{2ac}=\frac{1}{2}$
∵B∈(0,π),∴$B=\frac{π}{3}$;
(2)∵sinC=2sinA,∴由正弦定理可得c=2a,
代入b2=a2-ac+c2可得36=a2+4a2-2a2,
解得$a=2\sqrt{3}$,$c=4\sqrt{3}$,滿足a2+b2=c2,
∴△ABC為直角三角形,
∴△ABC的面積S=$\frac{1}{2}$×2$\sqrt{3}$×6=6$\sqrt{3}$.

點(diǎn)評 本題考查正余弦定理解三角形,涉及三角形的面積公式,屬基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.將長度為1m的鐵絲分成兩段,分別圍成一個(gè)正方形和一個(gè)圓形,求使正方形和圓形的面積之和最小的正方形的邊長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.如果奇函數(shù)y=f(x)(x≠0)在x∈(-∞,0)時(shí),f(x)=x+1,那么使f(x-2)<0成立的x的取值范圍是( 。
A.(-∞,1)∪(3+∞)B.(-∞,-1)∪(0,1)C.(-∞,0)∪(0,3)D.(-∞,1)∪(2,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.某品牌汽車4S點(diǎn),對該品牌旗下的A型、B型、C型汽車進(jìn)行維修保養(yǎng)調(diào)查,汽車4S店記錄了該品牌三種類型汽車的維修情況,整理得下表:
車型A型B型C型
頻數(shù)204040
假設(shè)該店采用分層抽樣的方法從上維修的100輛該品牌三種類型汽車中隨機(jī)抽取10輛進(jìn)行問卷回訪.
(Ⅰ)求A型,B型,C型各車型汽車的數(shù)目;
(Ⅱ)從抽取的A型和B型汽車中隨機(jī)再選出2輛汽車進(jìn)行電話回訪,求這2輛汽車來自同一類型的概率;
(Ⅲ)維修結(jié)束后這100輛汽車的司機(jī)采用“100分制”“打分的方式表示4S店的滿意度,按照大于等于80優(yōu)秀,小于80合格,得到如下列聯(lián)表
優(yōu)秀合格不合格
男司機(jī)103848
女司機(jī)252752
合計(jì)3565100
問:能否在犯錯(cuò)誤概率不超過0.01前提下認(rèn)為司機(jī)對4S店滿意度調(diào)查于性別有關(guān)?請說明原因.

P(K2≥k)0.1000.0500.0100.001
k2.7063.8416.63510.828
K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.動(dòng)圓M過定點(diǎn)(3,0),且與直線x=-3相切,設(shè)圓心M的軌跡為C.
(1)求C的方程;
(2)若過點(diǎn)P(6,0)的直線l與軌跡C交于A、B兩點(diǎn),且$\overrightarrow{AP}$=2$\overrightarrow{PB}$,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知f(x)=sin(ωx+$\frac{π}{3}$)(ω>0)的最小正周期為π.
(1)求在(0,$\frac{π}{2}$)內(nèi)一條對稱軸;
(2)求在(0,2π]內(nèi)的零點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知命題p:對任意x∈R,都有x2+1>0,則命題p的否定為( 。
A.存在x0∈R,使得${x_0}^2+1>0$B.存在x0∈R,使得${x_0}^2+1≤0$
C.存在x0∈R,使得${x_0}^2+1<0$D.存在x0∈R,使得${x_0}^2+1≥0$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.《張丘建算經(jīng)》是我國北魏時(shí)期大數(shù)學(xué)家丘建所著,約成書于公元466-485年間.其中記載著這么一道題:某女子善于織布,一天比一天織得快,而且每天增加的數(shù)量相同.已知第一天織布5尺,30天共織布390尺,則該女子織布每天增加的尺數(shù)(不作近似計(jì)算)為( 。
A.$\frac{16}{29}$B.$\frac{16}{27}$C.$\frac{11}{13}$D.$\frac{13}{29}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.如圖,定圓C的半徑為4,A為圓C上的一個(gè)定點(diǎn),B為圓C上的動(dòng)點(diǎn),若點(diǎn)A,B,C不共線,且$|{\overrightarrow{AB}-t\overrightarrow{AC}}|≥|{\overrightarrow{BC}}|$對任意的t∈(0,+∞)恒成立,則$\overrightarrow{AB}•\overrightarrow{AC}$=16.

查看答案和解析>>

同步練習(xí)冊答案