分析 (1)由余弦定理變形已知式子可得cosB的值,可得B值;
(2)由題意和正弦定理可得c=2a,代入b2=a2-ac+c2可得a和c的值,可得三角形為直角三角形,由面積公式可得.
解答 解:(1)∵(a+c)2-b2=3ac,∴b2=a2-ac+c2,
∴ac=a2+c2-b2,∴$cosB=\frac{{{a^2}+{c^2}-{b^2}}}{2ac}=\frac{ac}{2ac}=\frac{1}{2}$
∵B∈(0,π),∴$B=\frac{π}{3}$;
(2)∵sinC=2sinA,∴由正弦定理可得c=2a,
代入b2=a2-ac+c2可得36=a2+4a2-2a2,
解得$a=2\sqrt{3}$,$c=4\sqrt{3}$,滿足a2+b2=c2,
∴△ABC為直角三角形,
∴△ABC的面積S=$\frac{1}{2}$×2$\sqrt{3}$×6=6$\sqrt{3}$.
點(diǎn)評 本題考查正余弦定理解三角形,涉及三角形的面積公式,屬基礎(chǔ)題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-∞,1)∪(3+∞) | B. | (-∞,-1)∪(0,1) | C. | (-∞,0)∪(0,3) | D. | (-∞,1)∪(2,3) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
車型 | A型 | B型 | C型 |
頻數(shù) | 20 | 40 | 40 |
優(yōu)秀 | 合格 | 不合格 | |
男司機(jī) | 10 | 38 | 48 |
女司機(jī) | 25 | 27 | 52 |
合計(jì) | 35 | 65 | 100 |
P(K2≥k) | 0.100 | 0.050 | 0.010 | 0.001 |
k | 2.706 | 3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 存在x0∈R,使得${x_0}^2+1>0$ | B. | 存在x0∈R,使得${x_0}^2+1≤0$ | ||
C. | 存在x0∈R,使得${x_0}^2+1<0$ | D. | 存在x0∈R,使得${x_0}^2+1≥0$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{16}{29}$ | B. | $\frac{16}{27}$ | C. | $\frac{11}{13}$ | D. | $\frac{13}{29}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com