【題目】某家電公司銷售部門共有200位銷售員,每位部門對(duì)每位銷售員都有1400萬元的年度銷售任務(wù),已知這200位銷售員去年完成銷售額都在區(qū)間(單位:百萬元)內(nèi),現(xiàn)將其分成5組,第1組,第2組,第3組,第4組,第5組對(duì)應(yīng)的區(qū)間分別為, , , ,繪制出頻率分布直方圖.

(1)求的值,并計(jì)算完成年度任務(wù)的人數(shù);

(2)用分層抽樣從這200位銷售員中抽取容量為25的樣本,求這5組分別應(yīng)抽取的人數(shù);

(3)現(xiàn)從(2)中完成年度任務(wù)的銷售員中隨機(jī)選取2位,獎(jiǎng)勵(lì)海南三亞三日游,求獲得此獎(jiǎng)勵(lì)的2位銷售員在同一組的概率.

【答案】(Ⅰ),;(Ⅱ)見解析;。á螅

【解析】試題分析:(1)頻率分布直方圖中所有小長方形面積之和為1,所以有,解得的值,根據(jù)小長方形面積對(duì)應(yīng)區(qū)間概率,以及頻數(shù)等于總數(shù)與頻率乘積得完成年度任務(wù)的人數(shù)為.(2)分成抽樣就是按比例,可按小長方形縱坐標(biāo)之比進(jìn)行分人數(shù),(3)完成年度任務(wù)的銷售員中共有6人,利用枚舉法得6人中隨機(jī)選取2位,所有的基本事件數(shù)為15,其中在同一組基本事件數(shù)有6個(gè),最后根據(jù)古典概型概率公式計(jì)算概率.

試題解析:(Ⅰ)∵,∴. 

完成年度任務(wù)的人數(shù)為.

(Ⅱ)第1組應(yīng)抽取的人數(shù)為,

第2組應(yīng)抽取的人數(shù)為

第3組應(yīng)抽取的人數(shù)為,

第4組應(yīng)抽取的人數(shù)為

第5組應(yīng)抽取的人數(shù)為. 

(Ⅲ)在(Ⅱ)中完成年度任務(wù)的銷售員中,第4組有3人,記這3人分別為, , ,第5組有3人,記這3人分別為, , . 

從這6人中隨機(jī)選取2位,所有的基本事件為: , , , , , , , , , , , ,共有15個(gè)基本事件.

獲得此獎(jiǎng)勵(lì)的2位銷售員在同一組的基本事件有6個(gè),

故所求概率為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】己知函數(shù) (其中e為自然對(duì)數(shù)的底數(shù)),

(I)求函數(shù)的單調(diào)區(qū)間;

(II)設(shè),.已知直線是曲線的切線,且函數(shù)上是增函數(shù).

(i)求實(shí)數(shù)的值;

(ii)求實(shí)數(shù)c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某電影院共有1000個(gè)座位,票價(jià)不分等次,根據(jù)影院的經(jīng)營經(jīng)驗(yàn),當(dāng)每張票價(jià)不超過10元時(shí),票可全售出;當(dāng)每張票價(jià)高于10元時(shí),每提高1元,將有30張票不能售出,為了獲得更好的收益,需給影院定一個(gè)合適的票價(jià),需符合的基本條件是:①為了方便找零和算賬,票價(jià)定為1元的整數(shù)倍;②電影院放一場(chǎng)電影的成本費(fèi)用支出為5750元,票房的收入必須高于成本支出,用x(元)表示每張票價(jià),用y(元)表示該影院放映一場(chǎng)的凈收入(除去成本費(fèi)用支出后的收入)問:
(1)把y表示為x的函數(shù),并求其定義域;
(2)試問在符合基本條件的前提下,票價(jià)定為多少時(shí),放映一場(chǎng)的凈收人最多?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司為了解廣告投入對(duì)銷售收益的影響,在若干地區(qū)各投入萬元廣告費(fèi)用,并將各地的銷售收益繪制成頻率分布直方圖(如圖所示).由于工作人員操作失誤,橫軸的數(shù)據(jù)丟失,但可以確定橫軸是從開始計(jì)數(shù)的. [附:回歸直線的斜率和截距的最小二乘估計(jì)公式分別為.]

(1)根據(jù)頻率分布直方圖計(jì)算圖中各小長方形的寬度;

(2)試估計(jì)該公司投入萬元廣告費(fèi)用之后,對(duì)應(yīng)銷售收益的平均值(以各組的區(qū)間中點(diǎn)值代表該組的取值);

(3)該公司按照類似的研究方法,測(cè)得另外一些數(shù)據(jù),并整理得到下表:

廣告投入 (單位:萬元)

1

2

3

4

5

銷售收益 (單位:萬元)

2

3

2

7

由表中的數(shù)據(jù)顯示, 之間存在著線性相關(guān)關(guān)系,請(qǐng)將(2)的結(jié)果填入空白欄,并求出關(guān)于的回歸直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,設(shè)函數(shù).

(1)當(dāng)時(shí),求的極值點(diǎn);

(2)討論在區(qū)間上的單調(diào)性;

(3)對(duì)任意恒成立時(shí), 的最大值為1,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知某幾何體的三視圖如圖所示,則該幾何體的表面積為(

A.16
B.26
C.32
D.20+

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知直線關(guān)于直線對(duì)稱的直線為,直線與橢圓分別交于點(diǎn)、、,記直線的斜率為.

(Ⅰ)求的值;

(Ⅱ)當(dāng)變化時(shí),試問直線是否恒過定點(diǎn)? 若恒過定點(diǎn),求出該定點(diǎn)坐標(biāo);若不恒過定點(diǎn),請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知an=logn+1(n+2)(n∈N+),觀察下列運(yùn)算:a1a2=log23log34= =2;a1a2a3a4a5a6=log23log34…log67lg78= =3;….定義使a1a2a3…ak為整數(shù)的k(k∈N+)叫做希望數(shù),則在區(qū)間[1,2016]內(nèi)所有希望數(shù)的和為(
A.1004
B.2026
C.4072
D.22016﹣2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程.

在平面直角坐標(biāo)系中,傾斜角為的直線的參數(shù)方程為為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),以軸的正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程是.

(1)寫出直線的普通方程和曲線的直角坐標(biāo)方程;

(2)已知點(diǎn).若點(diǎn)的極坐標(biāo)為,直線經(jīng)過點(diǎn)且與曲線相交于兩點(diǎn),設(shè)線段的中點(diǎn)為,求的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案