14.已知集合$A=\left\{x\right.|\frac{x-1}{2x-1}≤0\left.{\;}\right\},B=\left\{x\right.|-3{x^2}+4x-1>0\left.{\;}\right\}$,則A∩B=( 。
A.$\left\{{x|\frac{1}{2}<x<1}\right\}$B.$\left\{{x|\frac{1}{2}≤x<1}\right\}$C.$\left\{{x|\frac{1}{3}<x<\frac{1}{2}}\right\}$D.

分析 化簡集合A、B,求出A∩B即可.

解答 解:集合A={x|$\frac{x-1}{2x-1}$≤0}={x|$\frac{1}{2}$<x≤1},
B={x|-3x2+4x-1>0}={x|$\frac{1}{3}$<x<1},
∴A∩B={x|$\frac{1}{2}$<x<1}.
故選:A.

點(diǎn)評(píng) 本題考查了集合的化簡與運(yùn)算問題,是基礎(chǔ)題目.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.sin50°cos35°+sin40°sin(-35°)=( 。
A.$\frac{\sqrt{6}-\sqrt{2}}{4}$B.$\frac{\sqrt{6}+\sqrt{2}}{4}$C.$\frac{\sqrt{2}-\sqrt{6}}{4}$D.$-\frac{\sqrt{6}+\sqrt{2}}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知向量$\overrightarrow m=({\sqrt{3}sinx,cosx}),\overrightarrow n=({cosx,cosx}),x∈R$,設(shè)$f(x)=\overrightarrow m•\overrightarrow n$.
(I)求函數(shù)f(x)的解析式及單調(diào)增區(qū)間;
(Ⅱ)在△ABC中,a,b,c分別為△ABC內(nèi)角A,B,C的對(duì)邊,且a=1,b+c=2,f(A)=1,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.求下列函數(shù)的定義域.
(1)y=$\frac{{\root{3}{4-x}}}{{\sqrt{x+1}}}-{x^0}${x|x>-1x≠0}
(2)y=$\sqrt{{{log}_{\frac{1}{2}}}(3x-2)}${x|$\frac{2}{3}$<x≤1}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知直線x+y=a與圓x2+y2=1交于A,B兩點(diǎn),O是原點(diǎn),C是圓上一點(diǎn),若$\overrightarrow{OA}+\overrightarrow{OB}=\overrightarrow{OC}$,則a的值為$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知點(diǎn)P(x,y)的坐標(biāo)x,y滿足約束條件$\left\{\begin{array}{l}x-y≥-1\\ x+y≤3\\ x≥0,y≥0\end{array}\right.$,且A(1,-2),則$\overrightarrow{OP}•\overrightarrow{OA}$的取值范圍為[-3,3].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.歐陽修《賣油翁》中寫到:(翁)乃取一葫蘆置于地,以錢覆其口,徐以杓酌油瀝之,自錢入孔入,而錢不濕,可見“行行出狀元”,賣油翁的技藝讓人嘆為觀止,若銅錢是直徑為2cm的圓,中間有邊長為0.5cm的正方形孔,若你隨機(jī)向銅錢上滴一滴油,則油(油滴的大小忽略不計(jì))正好落入孔中的概率為$\frac{1}{4π}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.人的體重是人的身體素質(zhì)的重要指標(biāo)之一.某校抽取了高二的部分學(xué)生,測出他們的體重(公斤),體重在40公斤至65公斤之間,按體重進(jìn)行如下分組:第1組[40,45),第2組[45,50),第3組[50,55),第4組[55,60),第5組[60,65],并制成如圖所示的頻率分布直方圖,已知第1組與第3組的頻率之比為1:3,第3組的頻數(shù)為90.
(Ⅰ)求該校抽取的學(xué)生總數(shù)以及第2組的頻率;
(Ⅱ)學(xué)校為進(jìn)一步了解學(xué)生的身體素質(zhì),在第1組、第2組、第3組中用分層抽樣的方法抽取6人進(jìn)行測試.若從這6人中隨機(jī)選取2人去共同完成某項(xiàng)任務(wù),求這2人來自于同一組的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知正項(xiàng)數(shù)列{an},前n項(xiàng)和為Sn,且有$\sqrt{{S}_{n}}$=λan+c.
(1)求證:λc≤$\frac{1}{4}$;
(2)若λ=1,c=0,求證:Sn≥($\frac{n+1}{2}$)2;
(3)若2a2=a1+a3,求證:{an}為等差數(shù)列.

查看答案和解析>>

同步練習(xí)冊答案